Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular troublemakers instead of antibiotics?

29.07.2016

How proteins prevent communication between bacteria

They may be slimy, but they are a perfect environment for microorganisms: biofilms. Protected against external influences, here bacteria can grow undisturbed, and trigger diseases. Scientists at Kiel University, in cooperation with colleagues at the Hamburg University of Technology (TUHH) in Hamburg-Harburg, are researching how it can be possible to prevent the formation of biofilms from the beginning.


Microscopic recordings show biofilms of Klebsiella oxytoca formed in flow-through cells. The protein QQ-2 leads to a significant reduction in biofilm formation in comparison with with the control

Nancy Weiland-Bräuer

On this basis, alternatives to antibiotics could be developed, as many pathogens are already resistant to most commercially used antibiotics. The study published in “Frontiers in Microbiology” shows that strategies from nature are particularly effective at inhibiting biofilms.

A thin layer floating on water, dental plaque, or slimy black coatings in the washing machine detergent drawer: biofilms originate when cells attach to surfaces, and organise themselves into coordinated three-dimensional consortia, embedded in an extracellular matrix. It becomes problematic when biofilms form on medical devices or implants.

Pathogenic bacteria, which trigger deseases, pose a particularly serious threat, as they cannot be treated with normal antibiotics when growing within a biofilm. Therefore: “One way to prevent illnesses is to stop biofilms forming in the first place,” according to Professor Ruth Schmitz-Streit from the Institute of General Microbiology at Kiel University.

In order to coordinate themselves and establish consortia on surfaces, the bacteria must communicate with each other via signal molecules (so-called “autoinducers”). If this communication is disrupted, no biofilm can be formed. This cell-to-cell communication, known as “quorum sensing” (QS), can be influenced by disruptive biomolecules (“quorum quenching” or QQ proteins).

“Proteins can break down these signal molecules, or modify them in such a way that they are no longer functional,” explained Schmitz-Streit. Therefore, the goal of the study, financed by the Federal Ministry of Education and Research (BMBF), was to find QQ proteins which disrupt this communication between bacteria as effectively as possible.

In contrast with previous studies, Professor Ruth Schmitz-Streit and Dr. Nancy Weiland-Bräuer, also from Kiel University, concentrated their search on natural environments outside the laboratory. “Because principles which occur in nature have evolved and established over a long time period and are therefore particularly effective,” said Schmitz-Streit.

This was demonstrated by the research team by means of a metagenomic approach: they took samples from seawater, from glaciers, but also from jellyfish or from biofilm residue from a washing machine. They extracted the complete DNA from the samples, and used this as a basis to identify proteins with the ability to break down the signal molecules, or render them ineffective.

While doing so, Schmitz-Streit and Weiland-Bräuer determined that the number of QQ proteins which can prevent cell-to-cell communication is extremely high in the marine environmental samples taken – higher than with terrestrial samples.

“As the oldest ecosystem, the marine system – including the oceans, water or algae – is incredibly rich in new, undiscovered substances. It offers a huge potential regarding biological activities and QQ mechanisms,” said Schmitz-Streit.

The research group discovered even more: the communication-disrupting protein QQ-2 proved itself to be particularly effective during the investigations. “This protein is very robust and can prevent many different types of biofilms,” explained Weiland-Bräuer. Previous studies focused more on disrupting a particular language of bacteria. “In contrast, the QQ-2 protein is orientated towards a 'universal language', and can disrupt the communication of different bacteria. This makes it a 'general troublemaker'.”

This fundamental research provides important results which may lead to biotechnological and medical applications in future. If the communication of pathogenic bacteria can be deliberately disrupted, it prevents the bacteria from forming biofilms and triggering deseases.

In light of the increasing resistance of pathogenic bacteria to antibiotics, the potent effect of natural QQ mechanisms could be an effective approach to the development of medications.

Original publication:
Weiland-Bräuer, N., Kisch, M., Pinnow, N., Liese, A., Schmitz, R.A.: "Highly effective inhibition of biofilm formation by the first 1 metagenome-derived AI-2 quenching enzyme." Frontiers in Microbiology, 13 July 2016. DOI: 10.3389/fmicb.2016.01098
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01098/full

Contact:
Prof. Ruth A. Schmitz-Streit
Institute of General Microbiology
Tel.: +49 (0)431/880 -4334
E-mail: rschmitz@ifam.uni-kiel.de

Dr. Nancy Weiland-Bräuer
Institute of General Microbiology
Tel.: +49 (0)431/880 -1648
E-mail: nweiland@ifam.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Further information:
http://www.uni-kiel.de

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>