Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Sunscreen: How DNA Protects Itself from UV Light

22.06.2015

X-ray pulses from the Linac Coherent Light Source probe the molecular dynamics of photoexcitation.

X-rays from the Linac Coherent Light Source were used to measure the ultrafast response of DNA nucleobases to ultraviolet light. Researchers found that the UV excited state in the nucleobase thymine decays rapidly, harmlessly dissipating the potentially destructive UV energy.


Image courtesy of Markus Guehr

Nucleobases (shown here is thymine) encode genetic information inside DNA. Even isolated nucleobases have a sophisticated mechanism protecting them from the destructive influence of ultraviolet light.

The Impact

The experimental findings give new insight on how the nucleobases inside DNA protect themselves from damage induced by ultraviolet light. In addition, the experimental scheme developed will be useful for probing the ultrafast dynamics of other classes of molecules in biology, chemistry and physics.

Summary

Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule is challenging using current spectroscopic approaches. Researchers at SLAC approached this problem by investigating how DNA, which absorbs light very strongly, protects itself by dissipating the UV energy as heat instead of breaking the chemical bonds that hold the DNA together. By using an ultrafast x-ray pulse, an innermost electron from a thymine molecule, a so-called core electron, is stripped away, resulting in an atom with a vacancy in its core level, resulting in a “core hole.”

The atom, now unstable, fills the core hole with an outer electron, and an electron is emitted via a process known as the Auger effect. Measurement of the kinetic energy of the Auger electrons reveals information about the dynamics.

This experimental scheme, called time-resolved Auger spectroscopy, allowed scientists to distinguish between the movement of the atomic nuclei and the changes in the distribution of electrons from an element specific point of view. Using this strategy for the DNA nucleobase thymine, researchers observed that the oxygen Auger spectrum shifts initially toward high kinetic energies due to the stretching of a single carbon-oxygen bond.

The Auger spectrum then shifts toward lower kinetic energies within 200 fs to an electronic relaxed state, which allows the UV energy to dissipate as heat rather than damaging the DNA. This newly developed tool should provide a window to view the motions of electrons in many areas of chemistry, biology and physics.

Funding

This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. M. G. acknowledges funding via the Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy. R. F. thanks the Swedish Research Council, the Göran Gustafsson Foundation (UU/KTH), and the Knut and Alice Wallenberg Foundation, Sweden for financial support.

The main part of the experimental research was carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Other portions of this research were carried out at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Publications

McFarland, BK, et al., “Ultrafast X-ray Auger Probing of Photoexcited Molecular Dynamics.” Nature Communications 5, 4235 (2014). [DOI: 10.1038/ncomms5235]

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>