Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Sunscreen: How DNA Protects Itself from UV Light

22.06.2015

X-ray pulses from the Linac Coherent Light Source probe the molecular dynamics of photoexcitation.

X-rays from the Linac Coherent Light Source were used to measure the ultrafast response of DNA nucleobases to ultraviolet light. Researchers found that the UV excited state in the nucleobase thymine decays rapidly, harmlessly dissipating the potentially destructive UV energy.


Image courtesy of Markus Guehr

Nucleobases (shown here is thymine) encode genetic information inside DNA. Even isolated nucleobases have a sophisticated mechanism protecting them from the destructive influence of ultraviolet light.

The Impact

The experimental findings give new insight on how the nucleobases inside DNA protect themselves from damage induced by ultraviolet light. In addition, the experimental scheme developed will be useful for probing the ultrafast dynamics of other classes of molecules in biology, chemistry and physics.

Summary

Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule is challenging using current spectroscopic approaches. Researchers at SLAC approached this problem by investigating how DNA, which absorbs light very strongly, protects itself by dissipating the UV energy as heat instead of breaking the chemical bonds that hold the DNA together. By using an ultrafast x-ray pulse, an innermost electron from a thymine molecule, a so-called core electron, is stripped away, resulting in an atom with a vacancy in its core level, resulting in a “core hole.”

The atom, now unstable, fills the core hole with an outer electron, and an electron is emitted via a process known as the Auger effect. Measurement of the kinetic energy of the Auger electrons reveals information about the dynamics.

This experimental scheme, called time-resolved Auger spectroscopy, allowed scientists to distinguish between the movement of the atomic nuclei and the changes in the distribution of electrons from an element specific point of view. Using this strategy for the DNA nucleobase thymine, researchers observed that the oxygen Auger spectrum shifts initially toward high kinetic energies due to the stretching of a single carbon-oxygen bond.

The Auger spectrum then shifts toward lower kinetic energies within 200 fs to an electronic relaxed state, which allows the UV energy to dissipate as heat rather than damaging the DNA. This newly developed tool should provide a window to view the motions of electrons in many areas of chemistry, biology and physics.

Funding

This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. M. G. acknowledges funding via the Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy. R. F. thanks the Swedish Research Council, the Göran Gustafsson Foundation (UU/KTH), and the Knut and Alice Wallenberg Foundation, Sweden for financial support.

The main part of the experimental research was carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Other portions of this research were carried out at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Publications

McFarland, BK, et al., “Ultrafast X-ray Auger Probing of Photoexcited Molecular Dynamics.” Nature Communications 5, 4235 (2014). [DOI: 10.1038/ncomms5235]

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>