Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in cooperation with colleagues at the University of Zurich and the Ruhr-Universität Bochum, have for the first time successfully tested a new tumor diagnosis method under near-real conditions. The new method first sends out an antibody as a "spy" to detect the diseased cells and then binds to them. This antibody in turn attracts a subsequently administered radioactively labeled probe. The scientists could then clearly visualize the tumor by utilizing a tomographic method. This procedure could improve cancer treatment in the future by using internal radiation.

The human immune system forms antibodies that protect the body from pathogens. Antibodies can also, however, be produced in a laboratory to precisely bind to tumor cells. They are used in cancer research to detect and fight malignant tumors. For example, antibodies can serve as transport vehicles for radionuclides, with which the affected regions can be visualized or can even be damaged. Until recently, a stumbling block has been their large molecular mass.


PNA-antibodies detect initially the diseased cells (red) and accumulate at the tumor site. Afterwards the radioactively labeled probes (blue) selectively bind to them by specific base pairing.

HZDR/Pfefferkorn

“This causes them to circulate in the body for too long before they reach the diseased cells,” explains Dr Holger Stephan from the Institute of Radiopharmaceutical Cancer Research at HZDR. "This is a disadvantage because organs that are not affected by the disease are exposed to radiation. It also makes the exact localization of the tumor in the body more difficult because the resulting images are less sharp.”

Together with colleagues at the University of Zurich and the Ruhr-Universität Bochum, the researchers from Dresden therefore chose an alternative strategy. “By using what is known as ‘pre-targeting’, the antibodies’ task is divided into two steps,” Dr Kristof Zarschler, a member of Stephan's team, explains. “In a figurative sense, we first send spies out in advance, over a longer period of time, to scout out the enemy – the tumor cells.

The ‘spies’ then share their position with their troops, which we subsequently send out so that they will directly reach their target with the radioactive material.” The researchers fall back on the cetuximab antibody as the scout, which binds selectively to the epidermal growth factor receptor (EGFR). In various types of tumors, there is an increase in this molecule’s formation or it might be found in a mutated form, which then leads the cells to grow and multiply uncontrolled.

Clear Visualization

The Dresden researchers combined the antibody with a peptide nucleic acid (PNA) derivative which Prof Gilles Gasser and Prof Nils Metzler-Nolte developed together with their respective working groups in Switzerland and Germany. “It is a very stable synthetic variant of DNA," says Holger Stephan. “Similar to a single strand of DNA, it consists of a certain sequence of the four organic bases. Complementary PNA with matching sequence binds to it in a highly precise and stable manner.”

During their experiments, the scientists first injected the PNA-EGFR antibody into tumor-bearing mice and gave this “spy” time to accumulate at the tumor site. They then administered the PNA counterpart, labeled with the radioactive substance technetium-99m. “Images we took using single photon emission computed tomography show that both the antibody and its counterpart located each other quickly,” says Zarschler, pleased with the results.

The tumor could thus be clearly visualized within a short period of time. “Furthermore, the radioactively labeled probes had already disappeared from the bloodstream after sixty minutes,” explains Holger Stephan. “This minimizes radioactive exposure risk of healthy body tissue. By pre-targeting, we can overcome limitations of conventional, radioactively marked antibodies.” According to the researchers, it will, however, take some time before the combination of PNA antibodies and their matching PNA counterparts can be used in diagnosing tumors in humans.

“Our results however show that the PNAs we tested are suitable candidates for further preclinical studies,” Stephan sums up. They could provide new possibilities not only for visualizing diseased cells but also for fighting them. “If the method is proven to work, it could also be used to transport therapeutically effective radioactive substances to the tumor in order to irradiate it from within and ultimately damage it.”

Publication:
A. Leonidova, C. Foerster, K. Zarschler, M. Schubert, H. Pietzsch, J. Steinbach, R. Bergmann, N. Metzler-Nolte, H. Stephan, G. Gasser, „In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system”, in: Chemical Science (2015), DOI: 10.1039/c5sc00951k

Further Information:
Dr. Holger Stephan
Institute of Radiopharmaceutical Cancer Research at HZDR
Phone +49 351 260-3091 | E-Mail: h.stephan@hzdr.de

Prof. Gilles Gasser
Department of Chemistry at the University of Zurich
Phone +41 44 63 54630 | E-Mail: gilles.gasser@chem.uzh.ch

Media Contact:
Simon Schmitt | Science editor
Phone +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400 | 01328 Dresden, Germany | www.hzdr.de

Weitere Informationen:

http://www.hzdr.de/db/Cms?pNid=99&pOid=45202

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Further reports about: CANCER DNA Helmholtz-Zentrum Molecular acid diagnosis sequence tumor cells

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>