Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Spies Sabotage a Protein's Activities in Specific Cellular Compartments

20.04.2015

Researchers find key to a critical enzyme’s many roles

The enzyme AMPK initiates a dizzying array of cellular activities, from breaking down worn-out cellular parts to turning on energy production. How does a single protein, activated by a single switch, fulfill so many different tasks without getting them mixed up?


Inoue Lab, Johns Hopkins Medicine

The “molecular spies” report AMPK activity in red and yellow. It is active to different degrees in different cellular compartments (top, bottom) and not active at all in cells missing AMPK (right). ER, endoplasmic reticulum.

To get at such a complex question, cell biologists at Johns Hopkins designed several molecular tools that allowed them to watch, measure and manipulate the activity of the enzyme AMPK in individual compartments within the cell. The new tools have confirmed that at least some of AMPK’s ability to multitask comes from variations in its activity level in each cellular compartment.

Takanari Inoue, Ph.D., an associate professor of cell biology at the Johns Hopkins University School of Medicine, compares a cell and its compartments to a house with many rooms. “We suspected that the AMPK in some rooms was working harder than in others. We set up spies in each room to monitor its activity. Then we devised a set of saboteurs to shut down AMPK’s activity in one room at a time so we could see the effects on the cell,” he says.

A summary of the study will appear online in the journal Cell Reports on April 16.

AMPK is a near-ubiquitous enzyme that maintains cells’ energy supplies. The main energy currency in cells is a molecule called adenosine triphosphate (ATP) that, as the name suggests, has three phosphate groups attached to it. Energy is released from ATP when one or two of the phosphate groups are removed, leaving adenosine diphosphate (ADP) or adenosine monophosphate (AMP), respectively.

If either of those molecules binds to AMPK, the enzyme’s shape changes to reveal its activation site, enabling other enzymes to activate it by adding a phosphate group to the site. Once activated, AMPK will add its phosphate group to other proteins, ultimately causing diverse changes in the cell, such as helping it grow in size, break down worn-out cellular parts, develop directionality or turn genes “on.” It was unknown how a single protein could produce such varied outcomes, but one hypothesis was that its activity levels were different in different compartments of the cell, allowing it to affect different sets of other proteins.

To see what it was up to, Inoue’s team designed a series of special molecules to “spy on” AMPK in specific compartments within lab-grown cells from a variety of species. Once the spies touched AMPK, they emitted light that could be seen and measured. In unstressed cells, the team found varying levels of AMPK activity in different cellular compartments. The nucleus, cytoplasm and cell membrane had the least activity, while the Golgi apparatus and the endoplasmic reticulum had the most.

When the researchers withheld glucose from the cells to lower their energy levels and rev up AMPK activity, they saw that each compartment responded to a different degree and within unique time frames. The greatest change in activity was in the cytoplasm, which saw more than a 40 percent increase in AMPK activity only half an hour after glucose withdrawal that was maintained for four hours. The mitochondria, on the other hand, saw a more modest increase that didn’t appear until four hours had passed.

Finally, the team modified the spies so that they could control their location in real time. These spies start off dispersed throughout the cell but then rapidly congregate at a specific compartment in response to a “chemical command” applied to the cells. (see VIDEO) Some of these molecules were simple spies like the others that would report on AMPK’s activities, but others were “saboteurs” because they could overwhelm AMPK and distract it from working on what it’s supposed to.

“We were able to halt AMPK’s activity in specific compartments — and nowhere else in the cell — on demand,” says Inoue. “And it happens so quickly, within seconds, that it doesn’t give the cell’s other signaling systems time to adapt, so the observations we make are entirely due to the absence of AMPK activity.”

He says the series of molecular tools can be used to further unravel the mystery of AMPK’s activities, and those of many other enzymes.

Other authors of the report include Takafumi Miyamoto, Elmer Rho, Vedangi Sample, Kirill Gorshkov, Melinda Chen and Jin Zhang of the Johns Hopkins University School of Medicine; Hiroki Akano, Masaki Magari and Hiroshi Tokumitsu of Okayama University in Japan; and Tasuku Ueno of the University of Tokyo.

This work was supported by grants from the National Institute of General Medical Sciences (GM092930); the National Institute of Diabetes and Digestive and Kidney Disorder (DK102910, DK089502); the National Cancer Institute (CA103175); the Ministry of Education, Culture, Sports, Science and Technology of Japan (26440056); the Japan Science and Technology Agency (10216); and the Japanese Society for the Promotion of Science.

Contact Information
Catherine Kolf
Senior Communications Specialist
ckolf@jhmi.edu
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>