Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular patterns of complex diseases


The Helmholtz Zentrum München has published results of the largest genome-wide association study on proteomics to date. An international team of scientists reports 539 associations between protein levels and genetic variants in ‘Nature Communications’. These associations overlap with risk genes for 42 complex diseases.

Genome-wide association studies (GWAS) provide an opportunity to associate concentration changes in certain proteins or metabolic products with gene loci. Knowledge of these genes makes it possible to establish connections to complex diseases.

Interaction Network of Genome, Proteome and Diseases.

Source: Nature Communications / CC BY 4.0

Scientists utilize the fact that to date, hundreds of associations between genetic variants and complex diseases have been demonstrated. These associations are immensely important because they do help uncover the underlying molecular mechanisms.

"In the world's largest proteomics GWAS to date, we worked with colleagues* to examine blood samples from 1,000 participants in the KORA study**," reports Dr. Gabi Kastenmüller. She is acting director and head of the Metabolomics Group at the Institute of Bioinformatics and Systems Biology (IBIS) at the Helmholtz Zentrum München. The team quantified a total of 1,100 proteins.

Dr. Christian Gieger, head of the Molecular Epidemiology Research Unit (AME) at the Helmholtz Zentrum München, adds: "We found 539 independent associations between protein levels and genetic variants." These overlap with genetic risk variants for 42 complex conditions, such as cardiovascular diseases and Alzheimer's disease.

"Our results provide new insights into the biological processes that are influenced by a very wide range of complex diseases and that can be used as a basis for the development of new strategies to predict and prevent these diseases," Gieger states. The team is now planning to investigate the exact mechanisms behind the new gene-protein associations.

Further information

* Participants from the Helmholtz Zentrum München were: The Molecular Epidemiology Research Unit (AME), the Institute of Epidemiology 2 (EPI2), the Institute of Bioinformatics and Systems Biology (IBIS), and the Institute of Genetic Epidemiology (IGE). External partners were the German Center for Diabetes Research (DZD), the German Center for Cardiovascular Disease (DZHK), and Weill Cornell Medicine, Qatar and Doha, Qatar.

** KORA study: The "Kooperative Gesundheitsforschung in der Region Augsburg" (Cooperative Health Research in the Augsburg Region) study has been investigating the health of thousands of people living in the Greater Augsburg area for 30 years. The objective is to understand the effects of environmental factors, lifestyle and genes. Key topics of the KORA studies are issues involving the genesis and progress of chronic diseases, particularly cardiac infarction and diabetes mellitus. Risk factors from the area of health-related behaviour (such as smoking, nutrition, and physical activity), environmental factors (including air and noise pollution), and genetics are explored for this purpose. Issues regarding the utilization and costs of healthcare are examined from the point of view of healthcare research.

Original publication: Karsten Suhre et al. (2017): Connecting genetic risk to disease endpoints through the human blood plasma proteome, Nature Communications, DOI: 10.1038/ncomms14357.

The Helmholtz Zentrum München, as the German Research Center for Environmental Health, pursues the objective of developing personalized medicine for the diagnosis, therapy, and prevention of widespread diseases such as diabetes mellitus and lung diseases. To this end, it investigates the interactions of genetics, environmental factors, and lifestyle. The Zentrum's headquarters is located in Neuherberg in the north of Munich. The Helmholtz Zentrum München employs around 2,300 people and is a member of the Helmholtz Association, which has 18 scientific-technical and biological-medical research centres with around 37,000 employees.

The Institute of Bioinformatics and Systems Biology (IBIS) concentrates on the analysis and interpretation of large, high-dimensional biological data sets in order to extract from them information on the molecular basis of complex diseases. In this framework, the institute systematically examines genetic variants, expression patterns, and protein and metabolite profiles and their associations. IBIS develops new bioinformatic and systems biology methods and resources that make it possible to model and visualize high throughput data and the results gained from them.

The Molecular Epidemiology Research Unit (AME) analyses population-based cohorts and case studies for certain diseases with the help of genomics, epigenomics, transcriptomics, proteomics, metabolomics, and functional analyses. The objective is to explain the molecular mechanisms in complex diseases such as type 2 diabetes and obesity. The unit runs the epidemiology biosample bank and handles sample administration and storage for national and international projects.

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail:

Scientific Contact at Helmholtz Zentrum München:
Dr. Christian Gieger, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit of Molecular Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4106 - E-mail:

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>