Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular link found between high glucose, metabolic disease


Scientists at Johns Hopkins say they've discovered a cause-and-effect link between chronic high blood sugar and disruption of mitochondria, the powerhouses that create the metabolic energy that runs living cells. The discovery, reported online in Proceedings of the National Academy of Sciences on April 27, sheds light on a long-hidden connection and, they say, could eventually lead to new ways of preventing and treating diabetes.

"Sugar itself isn't toxic, so it's been a mystery why high blood sugar can have such a profound effect on the body," says Gerald Hart, Ph.D. , director of the Johns Hopkins University School of Medicine's Department of Biological Chemistry. "The answer seems to be that high blood sugar disrupts the activity of a molecule that is involved in numerous processes within the cell."

An electron microscope image shows dark-stained O-GlcNAc transferase localized to one complex in the mitochondrial membrane, left, and scattered to the inside of the mitochondria, right.

Credit: Partha Banerjee/Johns Hopkins Medicine

Previous experiments by other research groups had shown that the high blood sugar of untreated diabetes alters the activity of mitochondria, compartments that process nutrients into useable energy for cells.

To find out why, postdoctoral fellow Partha Banerjee, Ph.D., compared the enzymes in mitochondria from the hearts of rats with diabetes to those from healthy rat hearts. He looked for differences in levels of two enzymes that add and remove a molecule called O-GlcNAc to proteins. Hart's research group has for 30 years studied cells' use of O-GlcNAc to control how nutrients and energy are processed.

Banerjee found that levels of one enzyme, O-GlcNAc transferase, that adds O-GlcNAc to proteins was higher in the diabetic rat mitochondria, while levels of an enzyme that removes O-GlcNAc, O-

"We expected the enzyme levels to be different in diabetes, but we didn't expect the large difference we saw," Banerjee says. He and his colleagues say they also found that the location of one of the enzymes within the mitochondria was different in the diabetic mice.

Producing energy requires an intricate interplay between enzyme complexes embedded in mitochondrial membranes, each with a distinctive role. O-GlcNAc transferase is normally found in one of these complexes, but in the diabetic mice, much of it had migrated to the inside of the mitochondria, Banerjee says.

The net effect of the changes in O-GlcNAc-related activity, Hart says, is to make energy production in the mitochondria less efficient so that the mitochondria begin to produce more heat and damaging molecules as byproducts of the process. The liver then kicks off an antioxidant process for neutralizing so-called free radicals, which involves making more glucose, increasing blood sugar further.

Finding a medication that normalizes activity of the O-GlcNAc enzymes, he says, could be an effective way to prevent or treat diabetes.


Junfeng Ma of The Johns Hopkins University was also an author on the paper.

Hart receives a share of royalty received by the university on sales of the CTD 110.6 antibody, which are managed by The Johns Hopkins University. CTD 110.6 antibody was used in the experiments described here.

Media Contact

Shawna Williams


Shawna Williams | EurekAlert!

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>