Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Bodyguards for Immature Membrane Proteins

08.09.2015

During their formation within the cells, many proteins rely on the assistance of molecular protectors, so-called chaperones. They help the proteins to fold correctly and thus ensure the right final structure. The roles of chaperones in membrane protein folding have long remained unclear. Researchers at the Biozentrum, University of Basel, and at ETH Zurich have now shown how chaperones stabilize an immature bacterial membrane protein and guide it in the right folding direction, thus protecting it from misfolding. Their study was recently published in “Nature Structural & Molecular Biology”.

Cellular machines continuously produce long polypeptide chains, the proteins. In order to properly fulfill its cellular function, a protein must however first adopt its correct spatial structure. In each cell there are molecular helper proteins called chaperones. They take care of the immature proteins to help them in the folding process and thus preventing errors.


Chaperones (light blue) promote the insertion and folding of the bacterial membrane protein FhuA (yellow).

University of Basel, Biozentrum

The scientists led by Prof. Sebastian Hiller from the Biozentrum, University of Basel, and Prof. Daniel Müller from the Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich in Basel have discovered how two chaperones in the gut bacterium E. coli protect the membrane protein FhuA during transport and assist its insertion into the membrane.

Chaperones help insertion of membrane protein

... more about:
»Biozentrum »Bodyguards »ETH »bacteria »proteins »structure

Countless proteins, which transport nutrients and signaling molecules, are embedded in the outer membrane of bacteria. One of these membrane transporters is the protein FhuA. Via this protein, the bacteria take up vitally important iron but also antibiotics. But how does the very large, barrel-shaped FhuA protein reach the outer membrane intact? The scientists from the Biozentrum and the D-BSSE have investigated this process more deeply.

In order to reach its goal in the outer membrane, FhuA uses the help of several chaperones. Using structural analyses and single-molecule force spectroscopy, the researchers have now elucidated how these two chaperones stabilize the immature protein and prevent misfolding. “This process is extremely dynamic,” says Hiller.

“Under the protection of the chaperones, within a millisecond, FhuA constantly changes its structure. It thus explores energetically favorable conformations which enable the stepwise insertion and folding of individual protein segments into the membrane.” With the insertion of the final protein segment, FhuA acquires its mature and functional barrel structure. Left unprotected, FhuA would fold incorrectly and finally aggregate.

Protein chaos without chaperones

Chaperones are significantly involved in the formation of functional proteins. They play an important role in the correct folding of soluble proteins and furthermore are necessary for the insertion of membrane proteins into the bacterial outer membrane. Because several organelles in plant and animal cells are of bacterial origin, chaperones also protect their membrane proteins in a similar manner and assist during membrane insertion. The new findings are consequently of great relevance also for diseases caused by misfolded proteins such as Alzheimer's, Parkinson's or cystic fibrosis.

“It has been known for a long time that chaperones protect other proteins from misfolding and encourage them to fold correctly. Now, our work has succeeded in demonstrating – for the first time in biological membranes – how chaperones support the membrane proteins that are key to pharmaceutical research,” explains ETH Professor Daniel Müller. Until recently, these could almost only be investigated using artificial environments. However, this meant that there was barely any understanding of how proteins fold into a cell’s membrane.

“To give a loose analogy, until now it was like putting a cow on a sheet of ice in order to investigate its natural behaviour and then observing surprising reactions,” says Müller. “We now have a better understanding of how the cell incorporates its molecular machines into membranes so that they can perform their versatile duties.”

Original source

Johannes Thoma, Björn M Burmann, Sebastian Hiller & Daniel J Müller
Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins
Nature Structural & Molecular Biology (2015), doi: 10.1038/nsmb.3087

Further information

Prof. Sebastian Hiller, University of Basel, Biozentrum, tel. +41 61 267 20 82, email: sebastian.hiller@unibas.ch
Prof. Daniel J. Müller, ETH Zurich, Department of Biosystems Science and Engineering, tel. +41 61 387 33 07, email: daniel.mueller@bsse.ethz.ch

Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Biozentrum Bodyguards ETH bacteria proteins structure

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>