Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modern Genetics Confirm Ancient Relationship Between Fins and Hands

23.12.2014

Paleontologists have documented the evolutionary adaptations necessary for ancient lobe-finned fish to transform pectoral fins used underwater into strong, bony structures, such as those of Tiktaalik roseae. This enabled these emerging tetrapods, animals with limbs, to crawl in shallow water or on land.

But evolutionary biologists have wondered why the modern structure called the autopod—comprising wrists and fingers or ankles and toes—has no obvious morphological counterpart in the fins of living fishes.


Andrew Gehrke, the University of Chicago

Autopod-building genetic “switches" found in the gar genome drive gene activity (green) in a distal strip of transgenic fish fins. Image shows a view of a transgenic zebrafish pectoral fish fin with cell nuclei in blue and gene activity in green.

In the Dec. 22, 2014, issue of the Proceedings of the National Academy of Sciences, researchers argue previous efforts to connect fin and fingers fell short because they focused on the wrong fish. Instead, they found the rudimentary genetic machinery for mammalian autopod assembly in a non-model fish, the spotted gar, whose genome was recently sequenced.

“Fossils show that the wrist and digits clearly have an aquatic origin,” said Neil Shubin, PhD, the Robert R. Bensley Professor of organismal biology and anatomy at the University of Chicago and a leader of the team that discovered Tiktaalik in 2004. “But fins and limbs have different purposes. They have evolved in different directions since they diverged. We wanted to explore, and better understand, their connections by adding genetic and molecular data to what we already know from the fossil record.”

Initial attempts to confirm the link based on shape comparisons of fin and limb bones were unsuccessful. The autopod differs from most fins. The wrist is composed of a series of small nodular bones, followed by longer thin bones that make up the digits. The bones of living fish fins look much different, with a set of longer bones ending in small circular bones called radials.

The primary genes that shape the bones, known as the HoxD and HoxA clusters, also differ. The researchers first tested the ability of genetic “switches” that control HoxD and HoxA genes from teleosts—bony, ray-finned fish—to shape the limbs of developing transgenic mice. The fish control switches, however, did not trigger any activity in the autopod.

Teleost fish—a vast group that includes almost all of the world’s important sport and commercial fish—are widely studied. But the researchers began to realize they were not the ideal comparison for studies of how ancient genes were regulated. When they searched for wrist and digit-building genetic switches, they found “a lack of sequence conservation” in teleost species.

They traced the problem to a radical change in the genetics of teleost fish. More than 300 million years ago, after the fish-like creatures that would become tetrapods split off from other bony fish, a common ancestor of the teleost lineage went through a whole-genome duplication (WGD)—a phenomenon that has occurred multiple times in evolution.

By doubling the entire genetic repertoire of teleost fish, this WGD provided them with enormous diversification potential. This may have helped teleosts to adapt, over time, to a variety of environments worldwide. In the process, “the genetic switches that control autopod-building genes were able to drift and shuffle, allowing them to change some of their function, as well as making them harder to identify in comparisons to other animals, such as mice,” said Andrew Gehrke, a graduate student in the Shubin lab and lead author of the study.

Not all bony fishes went through the whole genome duplication, however. The spotted gar, a primitive freshwater fish native to North America, split off from teleost fishes before the WGD.

When the research team compared Hox gene switches from the spotted gar with tetrapods, they found “an unprecedented and previously undescribed level of deep conservation of the vertebrate autopod regulatory apparatus.” This suggests, they note, a high degree of similarity between “distal radials of bony fish and the autopod of tetrapods.”

They tested this by inserting gar gene switches related to fin development into developing mice. This evoked patterns of activity that were “nearly indistinguishable,” the authors note, from those driven by the mouse genome.

“Overall,” the researchers conclude, “our results provide regulatory support for an ancient origin of the ‘late’ phase of Hox expression that is responsible for building the autopod.”

This study was supported by the Brinson Foundation; the National Science Foundation; the Brazilian National Council for Scientific and Technological Development grants; the National
Institutes of Health; the Volkswagen Foundation, Germany; the Alexander von Humboldt-Foundation, the Spanish and Andalusian governments; and Proyecto de Excelencia.

Additional authors include Mayuri Chandran and Tetsuya Nakamura from the University of Chicago; Igor Schneider from the Instituto de Ciencias Biologicas, Universida de Federal do Para, Belem, Brazil; Elisa de la Calle-Mustienes, Juan J. Tena, Carlos Gomez-Marin and José Luis Gómez-Skarmeta from the Centro Andaluz de Biología del Desarrollo, Sevilla, Spain; and Ingo Braasch and John H. Postlethwait from the Institute of Neuroscience, University of Oregon.

Contact Information
John Easton
Sr Science Writer
john.easton@uchospitals.edu
Phone: 773-795-5225
Mobile: 773-322-7380

John Easton | newswise
Further information:
http://www.uchospitals.edu

Further reports about: Genetics Modern Genetics bony fish fingers gene switches genes genetic switches regulatory teleost

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>