Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modern Genetics Confirm Ancient Relationship Between Fins and Hands


Paleontologists have documented the evolutionary adaptations necessary for ancient lobe-finned fish to transform pectoral fins used underwater into strong, bony structures, such as those of Tiktaalik roseae. This enabled these emerging tetrapods, animals with limbs, to crawl in shallow water or on land.

But evolutionary biologists have wondered why the modern structure called the autopod—comprising wrists and fingers or ankles and toes—has no obvious morphological counterpart in the fins of living fishes.

Andrew Gehrke, the University of Chicago

Autopod-building genetic “switches" found in the gar genome drive gene activity (green) in a distal strip of transgenic fish fins. Image shows a view of a transgenic zebrafish pectoral fish fin with cell nuclei in blue and gene activity in green.

In the Dec. 22, 2014, issue of the Proceedings of the National Academy of Sciences, researchers argue previous efforts to connect fin and fingers fell short because they focused on the wrong fish. Instead, they found the rudimentary genetic machinery for mammalian autopod assembly in a non-model fish, the spotted gar, whose genome was recently sequenced.

“Fossils show that the wrist and digits clearly have an aquatic origin,” said Neil Shubin, PhD, the Robert R. Bensley Professor of organismal biology and anatomy at the University of Chicago and a leader of the team that discovered Tiktaalik in 2004. “But fins and limbs have different purposes. They have evolved in different directions since they diverged. We wanted to explore, and better understand, their connections by adding genetic and molecular data to what we already know from the fossil record.”

Initial attempts to confirm the link based on shape comparisons of fin and limb bones were unsuccessful. The autopod differs from most fins. The wrist is composed of a series of small nodular bones, followed by longer thin bones that make up the digits. The bones of living fish fins look much different, with a set of longer bones ending in small circular bones called radials.

The primary genes that shape the bones, known as the HoxD and HoxA clusters, also differ. The researchers first tested the ability of genetic “switches” that control HoxD and HoxA genes from teleosts—bony, ray-finned fish—to shape the limbs of developing transgenic mice. The fish control switches, however, did not trigger any activity in the autopod.

Teleost fish—a vast group that includes almost all of the world’s important sport and commercial fish—are widely studied. But the researchers began to realize they were not the ideal comparison for studies of how ancient genes were regulated. When they searched for wrist and digit-building genetic switches, they found “a lack of sequence conservation” in teleost species.

They traced the problem to a radical change in the genetics of teleost fish. More than 300 million years ago, after the fish-like creatures that would become tetrapods split off from other bony fish, a common ancestor of the teleost lineage went through a whole-genome duplication (WGD)—a phenomenon that has occurred multiple times in evolution.

By doubling the entire genetic repertoire of teleost fish, this WGD provided them with enormous diversification potential. This may have helped teleosts to adapt, over time, to a variety of environments worldwide. In the process, “the genetic switches that control autopod-building genes were able to drift and shuffle, allowing them to change some of their function, as well as making them harder to identify in comparisons to other animals, such as mice,” said Andrew Gehrke, a graduate student in the Shubin lab and lead author of the study.

Not all bony fishes went through the whole genome duplication, however. The spotted gar, a primitive freshwater fish native to North America, split off from teleost fishes before the WGD.

When the research team compared Hox gene switches from the spotted gar with tetrapods, they found “an unprecedented and previously undescribed level of deep conservation of the vertebrate autopod regulatory apparatus.” This suggests, they note, a high degree of similarity between “distal radials of bony fish and the autopod of tetrapods.”

They tested this by inserting gar gene switches related to fin development into developing mice. This evoked patterns of activity that were “nearly indistinguishable,” the authors note, from those driven by the mouse genome.

“Overall,” the researchers conclude, “our results provide regulatory support for an ancient origin of the ‘late’ phase of Hox expression that is responsible for building the autopod.”

This study was supported by the Brinson Foundation; the National Science Foundation; the Brazilian National Council for Scientific and Technological Development grants; the National
Institutes of Health; the Volkswagen Foundation, Germany; the Alexander von Humboldt-Foundation, the Spanish and Andalusian governments; and Proyecto de Excelencia.

Additional authors include Mayuri Chandran and Tetsuya Nakamura from the University of Chicago; Igor Schneider from the Instituto de Ciencias Biologicas, Universida de Federal do Para, Belem, Brazil; Elisa de la Calle-Mustienes, Juan J. Tena, Carlos Gomez-Marin and José Luis Gómez-Skarmeta from the Centro Andaluz de Biología del Desarrollo, Sevilla, Spain; and Ingo Braasch and John H. Postlethwait from the Institute of Neuroscience, University of Oregon.

Contact Information
John Easton
Sr Science Writer
Phone: 773-795-5225
Mobile: 773-322-7380

John Easton | newswise
Further information:

Further reports about: Genetics Modern Genetics bony fish fingers gene switches genes genetic switches regulatory teleost

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>