Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017

The documentary "Chasing Coral," released on Netflix in July, is a cinematic warning about how the bleaching of coral reefs may foreshadow how these marine animals will respond to climate change. Corals are key to ocean health because they support the densest, most diverse ecosystems -- harboring species from turtles to algae to reef fish.

University of Washington scientists are looking at the burgeoning field of coral genetics to better predict, and maybe even prepare for, coral's future threats. Their new study uses modern genetic-sequencing tools to reveal the relatedness of three similar-looking corals. "This coral appears to be three different species, but it's been debated whether it's really three separate species or whether it's one that's really variable in its appearance," said first author James Dimond, a UW doctoral student in aquatic and fishery sciences.


Porites porites can have spindlier branches (upper right) or thicker, knobbier branches (lower images). Scientists have debated whether or not they are the same species.

Credit: James Dimond/University of Washington

Defining a species matters for conservation, because you can't monitor and protect a species if you don't know it exists.

"In the past we've relied on physical characteristics, like the coral skeleton, to determine what constitutes a coral species," Dimond said. "But the problem with that is that corals can vary their skeletal architecture. So disentangling whether you have two different species or just a single species that's varying itself due to environmental conditions can be really tricky."

Biologists had originally assumed that the widespread Atlantic corals were three species. Then a 2014 genetic study found that they were the same.

The new study, to appear in an upcoming issue of Molecular Ecology, finds new genetic evidence that they may, in fact, be three species. It also provides a glimpse into the epigenetics, a more mysterious form of genetic expression.

"It's the most in-depth analysis of coral epigenetics to date," said co-author Steven Roberts, a UW associate professor of aquatic and fishery sciences. "It may also prompt a thorough re-evaluation of these corals' family trees."

The study examined Porites porites, one of the more common types of corals. It is not among the roughly two dozen coral species listed as endangered. If it were to be listed in the future, biologists would need to know what constitutes a species.

The study used new tools to look at more than 1,000 single-letter changes in the genetic code, a marker of genetic diversity. The previous genetic study had looked at just 10 or 11 of these markers and found them to be the same in all three forms of coral.

"It appears to be a matter of looking more deeply into the genome, which is something we've only been able to do for the last couple of years," Dimond said. "Molecular biology technology is changing so rapidly, and this is just an example of that."

To definitively conclude that the three forms are, in fact, different species would mean using the same sequencing technique on more samples from across these corals' range, which includes the Gulf of Mexico, the Caribbean, the western Atlantic Ocean and off the coast of West Africa.

The authors also looked at epigenetics, which is any process that affects how the genetic code plays out in real life. Dimond's research focuses on the epigenetic process of DNA methylation, in which a carbon-based methyl molecule can bind to the DNA strand and thus affect how it gets translated into a protein that acts in the body.

The study's epigenetic analysis didn't show any consistent pattern among the different coral branch sizes, so was inconclusive. But the authors believe it provides a step forward in understanding this process in corals.

"It just gives a glimpse of the epigenetic variation within this group," Dimond said.

Scientists are interested in coral genetics and epigenetics because it could help them predict how corals will adapt to continued changes in the ocean environment.

Coral genetics and epigenetics could also aid in the process of selective breeding, a topic of current interest that could help corals deal with potentially rapid changes in the ocean environment.

"Selective breeding involves finding individuals that are more tolerant of high temperatures and, in some cases, finding specific genes that confer resistance to higher temperatures," Dimond said. "Once you're identified those genes and identified individuals that have those genes, then you can breed them, and seed reefs with those organisms."

The new study, he said, is part of the fundamental research that could help toward achieving those goals.

###

The research was funded by a Hall Conservation Genetics Research Award from the UW College of the Environment, the ARCS Foundation Seattle Chapter, the John E. Halver Fellowship to the UW School of Aquatic & Fishery Sciences and the National Science Foundation. The other co-author is Sanoosh Gamblewood at Western Washington University in Bellingham.

For more information, contact Dimond at jldimond@uw.edu and 360-650-7400 x253 or Roberts at sr320@uw.edu or 206-866-5141.

Media Contact

Hannah Hickey
hickeyh@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Hannah Hickey | EurekAlert!

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>