Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling to save a rare plant

23.03.2016

GPS, satellite, on-site mapping help endangered plant

Human activities continue to expand. At the same time, an increasing number of plants face habitat loss and fragmentation. In fact, more than 700 plants are classified as endangered in the United States.


Janis Boettinger and Vance Almquist search for shrubby reed-mustard plants at Big Pack Mountain.

Photo credit Julie B. Baker

One such plant is the shrubby reed-mustard. Natural gas and oil extraction projects have increased in Northeastern Utah where the plant grows. The construction of roads and well pads has fragmented shrubby reed-mustard habitats. The species is at risk for extinction.

Plants provide us with vital resources such as food and medicines. They also reduce soil erosion and filter ground water. "We need to protect plant biodiversity to maintain ecosystems. Conserving rare plants like the shrubby reed-mustard is an important part of that effort," says Janis Boettinger. Boettinger is a soil scientist at Utah State University.

... more about:
»Agronomy »GPs »satellite »soil characteristics

Part of the challenge is not knowing exactly where the plants grow. To help, researchers at Utah State University developed a computer model. This model uses satellite imagery and elevation data to better understand where shrubby reed-mustard grows. It can also identify potential new habitats for this endangered plant.

Most of us are familiar with models. Researchers use models to predict everything from weather patterns and sports wins to stock market performance and voting results. Models are collections of information, layered like Lego blocks. For example, local weather reports use wind direction, humidity, and other weather patterns. The information reveals trends and can predict future results.

For the shrubby reed-mustard plant, soil data turns out to be a major building block in predicting habitat.

"Our idea was to find large-scale information -- such as soil color -- from pre-existing satellite maps and digital databases. We could then connect to the known locations of shrubby reed-mustard plants," says Boettinger.

The researchers already had GPS information for a number of sites where the plants were growing. Using satellite maps provided more visual clues. "We found that some of the soil characteristics where shrubby reed-mustard plants grow have a visual component that shows up on the satellite images," says study co-author Brook Fonnesbeck.

Shrubby reed-mustard plants only grow in lighter-colored shale soils of a unique rock formation. Surrounding soils without the plants are much redder and darker sandstone soils.

The researchers also visited several locations where shrubby reed-mustard plants grow. They noted surface features. They also measured soil characteristics.

Researchers layered on-site measurements with GPS and satellite information. This built the model to predict where other shrubby reed-mustard plants grow.

"With this model we can look at large areas very quickly," says study co-author Julie Baker. Baker is a soil scientist at USDA Natural Resources Conservation Service. That's vital because the shrubby reed-mustard often grows in remote and rugged areas that are difficult to reach or survey.

The model worked with an accuracy of almost 70%. And the remaining 30%? "We were often very close to the presence of shrubby reed-mustard," says Boettinger, "but the satellite images didn't have the spatial resolution to be exact."

These models can provide an important tool for land managers. "It will help focus time, labor, and monetary efforts into areas with greater potential for success," Boettinger says.

More importantly, this method can also be useful for other plants that have a special niche, says Boettinger. "If a plant species grows in areas with distinct soil characteristics, this model can be very useful to identify and predict its habitat."

Read more about this research in SSSA Journal. The U.S. Fish and Wildlife Service, the Utah Agricultural Experiment Station, and the Utah State University Ecology Center supported this project.

Susan Fisk | EurekAlert!

Further reports about: Agronomy GPs satellite soil characteristics

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>