Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling to save a rare plant

23.03.2016

GPS, satellite, on-site mapping help endangered plant

Human activities continue to expand. At the same time, an increasing number of plants face habitat loss and fragmentation. In fact, more than 700 plants are classified as endangered in the United States.


Janis Boettinger and Vance Almquist search for shrubby reed-mustard plants at Big Pack Mountain.

Photo credit Julie B. Baker

One such plant is the shrubby reed-mustard. Natural gas and oil extraction projects have increased in Northeastern Utah where the plant grows. The construction of roads and well pads has fragmented shrubby reed-mustard habitats. The species is at risk for extinction.

Plants provide us with vital resources such as food and medicines. They also reduce soil erosion and filter ground water. "We need to protect plant biodiversity to maintain ecosystems. Conserving rare plants like the shrubby reed-mustard is an important part of that effort," says Janis Boettinger. Boettinger is a soil scientist at Utah State University.

... more about:
»Agronomy »GPs »satellite »soil characteristics

Part of the challenge is not knowing exactly where the plants grow. To help, researchers at Utah State University developed a computer model. This model uses satellite imagery and elevation data to better understand where shrubby reed-mustard grows. It can also identify potential new habitats for this endangered plant.

Most of us are familiar with models. Researchers use models to predict everything from weather patterns and sports wins to stock market performance and voting results. Models are collections of information, layered like Lego blocks. For example, local weather reports use wind direction, humidity, and other weather patterns. The information reveals trends and can predict future results.

For the shrubby reed-mustard plant, soil data turns out to be a major building block in predicting habitat.

"Our idea was to find large-scale information -- such as soil color -- from pre-existing satellite maps and digital databases. We could then connect to the known locations of shrubby reed-mustard plants," says Boettinger.

The researchers already had GPS information for a number of sites where the plants were growing. Using satellite maps provided more visual clues. "We found that some of the soil characteristics where shrubby reed-mustard plants grow have a visual component that shows up on the satellite images," says study co-author Brook Fonnesbeck.

Shrubby reed-mustard plants only grow in lighter-colored shale soils of a unique rock formation. Surrounding soils without the plants are much redder and darker sandstone soils.

The researchers also visited several locations where shrubby reed-mustard plants grow. They noted surface features. They also measured soil characteristics.

Researchers layered on-site measurements with GPS and satellite information. This built the model to predict where other shrubby reed-mustard plants grow.

"With this model we can look at large areas very quickly," says study co-author Julie Baker. Baker is a soil scientist at USDA Natural Resources Conservation Service. That's vital because the shrubby reed-mustard often grows in remote and rugged areas that are difficult to reach or survey.

The model worked with an accuracy of almost 70%. And the remaining 30%? "We were often very close to the presence of shrubby reed-mustard," says Boettinger, "but the satellite images didn't have the spatial resolution to be exact."

These models can provide an important tool for land managers. "It will help focus time, labor, and monetary efforts into areas with greater potential for success," Boettinger says.

More importantly, this method can also be useful for other plants that have a special niche, says Boettinger. "If a plant species grows in areas with distinct soil characteristics, this model can be very useful to identify and predict its habitat."

Read more about this research in SSSA Journal. The U.S. Fish and Wildlife Service, the Utah Agricultural Experiment Station, and the Utah State University Ecology Center supported this project.

Susan Fisk | EurekAlert!

Further reports about: Agronomy GPs satellite soil characteristics

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>