Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobilization of jumping genes in pluripotent stem cells may affect safety of stem cell-based therapy

08.01.2016

Reprogramming of human cells into induced pluripotent stem cells (hiPSCs) activates normally repressed, endogenous mobile DNA (retrotransposons; jumping genes), which can result in new insertions in the stem cell genome. The function of differentiated cells derived from such stem cells could be hampered by these mutations. Moreover, these retrotransposon insertions can affect genes relevant to tumor development. These findings raise questions regarding the biosafety of hiPSC-derived therapeutic cells. Nature Communications reports these findings in its online issue from 8th January 2016.

Human induced pluripotent stem cells (hiPSCs) hold substantial promise for biomedical applications because they have the potential to give rise to every cell type of the human body. Amongst other applications, hiPSCs have the potential to be applied in regenerative medicine for autologous cell therapies.


Human induced pluripotent stem cell colony expressing endogenous LINE-1 proteins (red) which lead to the mobilization of transposable elements in the stem cell genome. Cell nuclei are cyan stained.

Klawitter S et al.: Nature Communications

To this end, patients’ somatic cells are reprogrammed into hiPSCs, differentiated into the favored, therapeutically relevant cell type, and finally administered to the patient. However, during reprogramming and hiPSC cultivation, genetic and epigenetic aberrations occur.

The scientists uncovered that mobilization and resulting new insertions of endogenous jumping genes occurred in the genomes of 4 out of 8 analyzed hiPSC lines both during reprogramming and subsequent hiPSC cultivation.

Mobilization of jumping genes occurred at a frequency of ~1 retrotransposition event per hiPSC. Mobilization of preexisting endogenous L1 elements also generated new functional L1 copies which again are able to spread throughout the genome and give rise to new gene mutations. Jumping of endogenous transposable elements causes new, potentially mutagenic insertions that can influence the function of the host cell and participate in the process of transformation to a tumor cell.

“Genomic integrity of pluripotent stem cells can be impaired by the mobilization of endogenous transposable elements which is mediated by endogenous L1 activity. This raises the question to what extent the safety of cellular therapies is affected if differentiated cells derived from such hiPSCs are applied”, said Dr Schumann explaining the significance of their findings.

The research group will address these questions as a next step. From a regulatory point of view, testing the safety of these cells before they are applied in a potentially therapeutic setting would reduce the risk associated with these cells.

Background – Induced pluripotent stem cells in Biomedicine

Human induced pluripotent stem cells (hiPSCs) hold substantial promise for regenerative medicine. hiPSCs are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. hiPSC applications include disease modeling, study of cell development and function, in vitro screening of drug candidates on healthy and diseased cells. hiPSCs are a cell source of potential future substitutive and regenerative autologous cell therapies where patient cells are reprogrammed to pluripotent stem cells and subsequently differentiated into the favoured therapeutic cell type. Unlike organ transplants and human embryonic stem cells, hiPSCs are a source of autologous cells compatible with the immune system of transplant recipients.

Original Publication:
Klawitter S, Fuchs NV, Upton KR, Muñoz-Lopez M, Shukla R, Wang J, Garcia-Canadas M, Lopez-Ruiz C, Gerhardt DJ, Sebe A, Grabundzija I, Merkert S, Gerdes P, Pulgarin JA, Bock A, Held U, Witthuhn A, Haase A, Sarkadi B, Löwer J, Wolvetang EJ, Martin U, Ivics Z, Izsvák Z, Garcia-Perez JL, Faulkner GJ, Schumann GG (2015). Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 7, Article number: 10286
doi:10.1038/ncomms10286


The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen near Frankfurt/Main, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.nature.com/ncomms/2016/160108/ncomms10286/full/ncomms10286.html - Abstract of the Publication
http://www.pei.de/EN/information/journalists-press/press-releases/2016/01-mobili... - This Press Release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>