Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondria on guard of human life

18.11.2015

Living mitochondria will tell researchers about processes that occur inside of them grace to the work of scientists from Lomonosov Moscow State University

A group of researchers from Lomonosov Moscow State University in collaboration with Russian Science Foundation developed a unique method for the selective study of electron transport chain in living mitochondria by using nondestructive analysis. The study was published in Scientific Reports.


Living mitochondria will tell researchers about processes that occur inside of them grace to the work of scientists from Lomonosov Moscow State University and their colleagues from Denmark and Germany. The work will not only shed light on the intracellular life, but also will help to create new methods of disease diagnostics.

Credit: Lomonosov Moscow State University

Mitochondria are organelles of fundamental importance for cellular energy production and are often described as "the powerhouse of the cell". Mitochondria generate adenosine triphosphate (ATP), used as a universal source of chemical energy. The main role in the process of ATP synthesis belongs to the transport of electrons between special proteins in the inner mitochondrial membrane, one the most important of which is called cytochrome c.

Mitochondria are of a special interest for scientists because these organelles contain mtDNA - molecules that carry maternally inherited genetic information. From this point of view mitochondria are a very interesting object of research for genetic and health scientists, whose field of work lies in the area of genetic disorders.

According to Nadezda Brazhe from the Department of Biophysics (Biological Faculty, Moscow State University), there are many methods of mitochondria study, but even the most advanced and sophisticated can not provide detailed information about the processes that occur inside and in between mitochondrial membranes during the electron transport.

Researchers from Moscow State University suggested a novel and promising approach based on the surface-enhanced Raman spectroscopy (SERS). During last decade this method becomes more popular in studies of molecule properties in a tube and inside living cells.

There are two types of light scattering: Rayleigh scattering (or elastic scattering) does not influence on the state of photon that falls off the obstacle without changing its frequency, and Raman scattering (or inelastic scattering), when photon interacts with molecules changing their energy level. As a result, photon frequency also changes and photon carries away some information about the encountered molecule. This information can potentially be used for the further study of the molecule.

Physicists developed the method that permit to separate photons of Raman and Rayleigh scattering with the help of special spectrometers, but inelastic collisions occur extremely rarely. That is why combinational (Raman) scattering turns out to be weak and low intensive, which makes it almost undetectable.

The problem was solved in 1974 when an unusual effect was discovered: if the object that scattered Raman photons was located in close proximity to nanostructured metal surface, the scattering billionfold intensified. Researchers still cannot give a full explanation of this phenomenon, but they suggest that this effect occurs due to plasmons -- quasiparticles, which represent surface electron oscillations relatively to positively charged nuclei of nanostructure's metal. If the frequencies of plasmon and Raman photon coalesce, the resonance is produced, which helps to make almost undetectable processes visible. This effect gave birth to a specific type of spectroscopy - SERS.

Biologists who study biomacromolecules understood that this type of spectroscopy could be a perspective way to study function of molecules inside living organelles or cells without destruction. From the middle of 2000th biologists tried to implement the method in practice, but not all attempts were successful.

According to Nadezda Brazhe, the main reasons of failure were related to inefficiency of nanostructures. Thousands of nanostructured surfaces were invented, but some of them were not capable to create resonance on the frequencies needed, the others turns out to be toxic for mitochondria or degraded when put into physiological fluids.

"Biologists, chemists and physicists were involved into our work. This cross-disciplinary approach made our success possible - we were able to create nanostructured surfaces and new methodological approach to study mitochondria. Success would be impossible without our colleagues from MSU Department of Material Science, -- says Nadezda Brazhe. - Young researchers from group of Prof. Eugene Goodilin after long and careful examinations found appropriate and non-toxic nanostructure, which allowed us to complete the work".

The work lasted several years and was very difficult both for biologists and for nanochemists. Sometimes an achieved result seemed to be a miracle - but a miracle that can be explained from a scientific point of view.

The final result turned out to be surprisingly simple: diluted mitochondria sample was placed on the nanostructured silver surface; laser light was focused on mitochondria aggregated on nanostructures and SERS spectra of cytochrome c inside living mitochondria was recorded. After that researchers analyzed the SERS spectra. It turned out that only Raman scattering from cytochrome c experiences manifold enhancement. Therefore, the researchers had the chance to see in details the changes in cytochrome c structure that occur in process of electron transport and ATP synthesis. With the use of different agents, scientists could initiate and stop electron transport and ATP synthesis in mitochondria, and these changes were well detectable in recorded spectra.

No epoch-making discoveries were made during the work. Nevertheless, scientists developed a method, which permits to make such discoveries. The use of the method is now available for everybody, and Brazhe and her colleagues want to continue their work.

"Our next step will be to analyze mitochondria taken from heart and skeletal muscle of rats with cardiovascular diseases and diabetes. We hope that the results of the work will help to develop a method for the early diagnostics of pathologies. It will help to start the disease treatment earlier and to make medication more efficient", -- says Nadezda Brazhe.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

Further reports about: Raman scattering SERS mitochondria mitochondrial organelles spectroscopy synthesis

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>