Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mini-Cockchafers reveal threatening fragmentation of South African Forests


The remains of South Africa’s indigenous forests hold a valuable and unique wildlife, fostered by long-term climatic stability and complex patterns of local climates. Researchers of the Zoological Research Museum Alexander Koenig – Leibniz-Institute for Biodiversity of animals (ZFMK, Bonn, Germany) now investigated their still debated natural extend at hand of forest-associated chafers. Models of the beetle’s potential distribution were calculated using data on their preferred climate and occurrence. In combination with genetic data, they indicated a threatening break-down of habitat connectivity which could be the case also for other forest species.

However, the analyses also revealed areas that connect or that might connect today’s beetle populations most effectively. These areas should thus be considered for high priority conservation.

Male beetle of Pleophylla silvatica searching for a mate. This species was newly discovered and described during the work on this publication.

Copyright: D. Ahrens, ZFMK Bonn

Logging of a timber plantation, now “biological deserts” and no replacement habitats for forest species.

Copyright: D. Ahrens, ZFMK, Bonn

Natural indigenous forests are rarely found in South Africa. They only cover 0.6% of the countries area and only survived in protected gorges and on mountain slopes. Among others, this is due to fires which are utilized to retain farmland but also to preserve the likewise ecologically valuable grassland and the typical South African fynbos (“fine bush”) vegetation.

Despite their small extent these forests hold a rich flora and fauna, constituted of species that only occur there. This is also attributed to southern African climate which was relatively stable over long evolutionary time scales compared to other regions in the world. Also, a complex variety of small-scale local climates facilitated today’s biological diversity. Since this is true for forests as well as for other vegetation forms, there are ongoing debates on the natural extent of the threatened South African forest remains.

A study about forest-associated mini-cockchafers that was recently published by researchers at the Zoological Research Museum A. Koenig in the scientific journal Global Change Biology, now suggests a larger potential natural extent of indigenous forest than currently believed.

Because beetles of the genus Pleophylla exclusively occur in forests and their larvae and adults are not restricted to specific plant species, their occurrence can be assumed representative for the forests distribution. Models based on currently known occurrences of the beetles and suitable climate showed that a much wider extent of forests would be possible and thus support previous similar findings of other researchers.

Projecting the models back to past climate revealed that South African forests naturally increased and decreased several times since the last glacial. Under certain conditions these fluctuations could even help to explain the enormous species richness found in South Africa, which might in some cases be the result of repeated isolation of populations.

However, the current minimum of forest cover is threatening, because human activities like fire and forestry impede the forest’s natural expansion. The high degree of fragmentation pushes many species to their maximum dispersal capacity, so that there are already isolated populations. This is confirmed by climate-model-based connectivity analyses as well as genetic data of the investigated beetles.

Further diminution of forests or the eradication of stepping stone populations might thus lead to genetic impoverishment or extinction of many populations. The insights of the researchers from Bonn can be seen as a first step to a sustainable conservation of the threatened South African forest fauna in accordance with other valuable land forms, since they show concrete corridors that are well suited for efficient afforestation and high priority conservation of forest patches.

Dr. Dirk Ahrens
Zoological Research Museum Alexander Koenig - Leibniz-Institute for Animal Biodiversity
Adenauerallee 160, 53113 Bonn
Phone: +49 228 9122 286

Original publication:
Eberle, J., Rödder, D., Beckett, M., and Ahrens, D. (2017) Landscape genetics indicate recently increased habitat fragmentation in African forest-associated chafers. Global Change Biology (2017), doi: 10.1111/gcb.13616

Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity (ZFMK) is an independent research institute. The focus of research is on performing an inventory of the zoological species diversity on earth, on the analysis of changes in biodiversity as a result of environmental factors, and on evolutionary processes at the morphological and molecular levels. ZFMK furthermore explores the context of structure and function of ecological systems, advanced scientific methods, and the study of the history of science. The permanent exhibition “Our blue planet – the living network” offers a genuine nature experience based on naturalistic ecosystem displays.

The Leibniz Association is a network of 91 scientifically, legally, and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges.

Sabine Heine | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>