Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic collisions help proteins stay healthy

08.08.2016

Heat shock proteins ram into other proteins, generating force that is beneficial

Studies at The University of Texas Health Science Center at San Antonio are providing basic new understanding about "heat shock proteins," also called "chaperone proteins." These proteins, first identified in cells subjected to heat, are very important under many stressful and non-stressful metabolic conditions.


This is a model of the structure of clathrin, a protein that researchers at The University of Texas Health Science Center at San Antonio used to study how a heat shock protein disassembles protein complexes.

Credit: Drs. Eileen Lafer and Rui Sousa/UT Health Science Center at San Antonio

They maintain proper protein function and, importantly, prevent the inappropriate accumulation of damaged proteins. For example, accumulation of damaged proteins such as beta amyloid, tau and synuclein are thought to be very important in the development of diseases of the brain such as Alzheimer's disease and Parkinson's disease.

Aug. 1 in the journal Nature Structural & Molecular Biology, a Health Science Center research team led by Rui Sousa, Ph.D., and Eileen M. Lafer, Ph.D., both professors of biochemistry in the School of Medicine, presented data that show how heat shock proteins break apart protein complexes. They found that when heat shock proteins with molecular weight 70 (Hsp70s) are recruited to protein complexes, rather than simply binding to these complexes, the Hsp70s collide with them and generate a force that dissolves the complexes.

"No one knew how the heat shock proteins pull apart bad protein complexes," Dr. Sousa said. "At the molecular level, everything is moving, colliding and bumping, and smashing into other components of the cells. We found that the system moves Hsp70s to where they are needed. Once this occurs, collision pressures pull things apart."

Model system

Previous attempts to glean this information failed because the proteins studied were too heterogeneous--of too many different sizes, shapes and actions--to isolate the Hsp70 behavior.

The UT Health Science Center team studied clathrin, a protein that is uniform in size and shape and is important in making intracellular cages that transport other proteins. Previously clathrin was only available from animal specimens, making it very difficult to manipulate experimentally. Dr. Lafer made a technical breakthrough when she was able to grow clathrin in bacteria for the first time using recombinant DNA technology. The clathrin could then be genetically engineered for mechanistic studies.

Dr. Lafer grew clathrin "cages"--shaped like microscopic soccer balls--that provided the biological raw material for Dr. Sousa and the team to study the force that occurs with Hsp70 collisions. The clathrin model system could be manipulated to yield precise results.

A wrecking machine

Dr. Sousa gave this analogy of the study: The heat shock protein is like a worker with an ax who, when moved to a wood pile, begins swinging. The wood pile represents a protein complex. The scientists give the worker both thick trees and thin trees to swing at, and spindly wood and hard wood. They change the angle of the wood pile, and every other variable, to learn how this affects the chopping.

By making variants of clathrin with recombinant DNA technology, team members were able to manipulate this biological material in ways that allowed them to determine the mechanism by which it is taken apart by Hsp70.

"This work was a tour de force, requiring the convergence of exceptional biochemical and molecular genetic skills with a deep understanding of the principles of physical chemistry," said Bruce Nicholson, Ph.D., chair of the Department of Biochemistry at the Health Science Center. "Such insights into the most basic aspects of protein chemistry and cell biology are often, as in this case, driven by a curiosity to find out how the molecular machines that drive our bodies work. But from these basic pursuits of scientific curiosity will often stem great benefits to human health."

Hsp70 in disease

Understanding Hsp70 behavior may have relevance to human disease. By increasing Hsp70 function, scientists cured Huntington's, a neurodegenerative disease, in a fly model. Cancer is another interesting focus. Tumors rely on Hsp70s to survive, so lowering Hsp70 function is a topic in cancer research.

"This is an impressive study that not only improves our understanding of cellular biology, but could lead to therapeutic discoveries for neurodegenerative diseases," said Francisco González-Scarano, M.D., dean of the School of Medicine and executive vice president for medical affairs of the Health Science Center. "It is a tribute to scientists who ask hard questions and develop tools to answer them. My congratulations to the team."

"We attacked this problem because it was a really important question in cellular biology," Dr. Lafer said. "We didn't do it because we wanted to cure neurodegenerative disease or cancer. We know, however, that when we attack really important questions in science and biology, it ultimately leads to translational applications down the line."

"Sometimes as a scientist you just increase understanding of the way the world works," Dr. Sousa said. "This is something scientists have wanted to know."

###

News online

For current news from the UT Health Science Center San Antonio, please visit our online newsroom, like us on Facebook, follow us on Twitter. or view us on YouTube.

About the UT Health Science Center at San Antonio

The University of Texas Health Science Center at San Antonio, with missions of teaching, research and healing, is one of the country's leading health sciences universities. Its schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced 33,000 alumni who are advancing their fields throughout the world. With six campuses in San Antonio and Laredo, the university has a FY 16 revenue operating budget of $801.8 million and is the primary driver of its community's $30.6 billion biomedical and health care industry. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Will Sansom | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>