Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms duke it out within algal blooms

01.03.2016

Looking closer, scientists discover that blooms such as 'red tides' encompass microscopic battles, with the front lines shifting on a daily basis

An unseen war rages between the ocean's tiniest organisms, and it has significant implications for understanding the ocean's role in climate change, according to a new study.


A fluorescence microscopic image showing an example of the phytoplankton and bacteria that David Needham and Jed Fuhrman observed during a five-month study of algal blooms. The large star-shape in the middle is phytoplankton; the larger green dots are bacteria or Archaea; and the tiny green dots are viruses.

Courtesy of David Needham and Jed Fuhrman/USC

David Needham and Jed Fuhrman from the USC Dornsife College of Letters, Arts and Sciences sampled water off the coast of Southern California over the course of five months, almost every day shortly after an algal bloom occurred, and found that the cloud of microorganisms is anything but uniform. Instead, they found traces of a constant battle between dozens of species, with the fortunes of war favoring different organisms on a daily basis.

Not only do the tiny organisms, known as phytoplankton, make up the base of the food chain in the ocean, they also are the planet's main scrubbers of carbon dioxide from the atmosphere.

"We witnessed a daily boom and bust among the phytoplankton species," said Fuhrman, senior author of a study that was published in Nature Microbiology on Feb. 29.

Scientists concerned with global warming have a vested interest in looking closely at phytoplankton. The microscopic plants, most of which are about as big as a piece of paper is thick, perform roughly half of the world's carbon fixation - that is, they convert carbon dioxide from the atmosphere into organic compounds that can be used by other organisms.

As creatures that exist on the boundary between sea and sky, they also have an outsized role in carbon fixation - sucking up atmospheric carbon dioxide and locking it away in the ocean.

Different phytoplankton manage carbon dioxide to varying degrees, however, making it important for researchers to gain a more nuanced understanding of algal blooms if they hope to quantify the blooms' role in carbon fixation and carbon sequestration.

Scientists have also long wondered about the trigger of algal blooms, which can include "red tides" caused by toxic dinoflagellates that poison marine life like sea lions and can render shellfish in the area unsafe to eat. Those dinoflagellates and other toxic algae were among some of the microorganisms that dominated the bloom periodically.

Most previous efforts to study the blooms relied on microscope analysis to classify which species of phytoplankton were in the mix - a problematic strategy, given that many of the organisms tend to look alike, even to a trained eye.

Instead, Needham and Fuhrman analyzed the organisms' ribosomal RNA, which give each species a distinctive and quantifiable signature. Specifically, they sequenced the RNA from the parts of the cell that perform photosynthesis, called chloroplasts.

"This could shift how this work is done in the future," said Needham, lead author of the study. "I think a lot of people are going to start taking a closer look at their blooms."

The samples were collected by dipping buckets off the side of the Miss Christi - the ship that sails daily between San Pedro and the USC Wrigley Marine Science Center (run by the USC Wrigley Institute for Environmental Studies) on Catalina Island - at a specific location at about the half way point of the trip each day.

The authors were surprised not only by the sheer diversity of phytoplankton in the bloom they studied - they counted about three dozen different species - but also by the constant and abrupt shifts in which species were dominant within the bloom.

Some of the species variability can be attributed to spatial variability However, the content of the samples changed too dramatically for that to be the sole cause, Needham and Fuhrman concluded.

In addition, as the phytoplankton varied, so did the species of bacteria and other microorganisms that feed on the organic material produced by them. On one of the sample days, the team was shocked to discover that the dominant species were in a group called the Archaea - single-celled microorganisms once thought to live only in extreme environments like hot springs.

"Until the 1990s nobody thought Archaea were even present in the sea in appreciable numbers," Needham said.

Needham and Fuhrman's findings also have bearing on the causes of algal blooms, which remain shrouded in mystery. Temperature and nutrient content of the ocean have been shown to help trigger the blooms - but they remain unpredictable.

###

This research was funded by the National Science Foundation, grants 1031743 and 1136818; and the Gordon and Betty Moore Foundation Marine Microbiology Initiative, grant GBMF3779.

The study can be found online at http://www.nature.com/articles/nmicrobiol20165.

Media Contact

Robert Perkins
perkinsr@usc.edu
213-740-9226

 @USC

http://www.usc.edu 

Robert Perkins | EurekAlert!

Further reports about: Marine algal blooms carbon dioxide carbon fixation dioxide microorganisms

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>