Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micromotors use surface variations for docking and guiding

17.02.2016

Researchers at the Max Planck Institute for Intelligent Systems, the Institute for Bioengineering of Catalonia (IBEC) and the University of Stuttgart have revealed in an article in Nature Communications that micromotors can be guided using tiny topographical patterns on the surfaces over which they swim.

Samuel Sánchez and Mykola Tasinkevych's ‘microswimmers’ are usually guided through fluids using specially engineered magnetic multilayer coatings, which combined with external magnetic fields, helps to control their trajectory.


An active particle approaches a micro-fabricated step and orients along it due to chemical activity and hydrodynamic interactions.

MPI for Intelligent Systems, Stuttgart


Self-propelled Janus particles dock around micro-fabricated circular patterns.

MPI for Intelligent Systems, Stuttgart

This new study, the result of a collaboration between experimental research and theory, demonstrates that the particles can use the features of the surfaces over which they swim to change their direction of motion.

“Micromotors tend to settle and move near surfaces, and we’ve seen that this tends to interfere with their swimming behaviour,” says group leader and ICREA research professor Samuel, who heads the Smart Nano-Bio-Devices group at IBEC and Stuttgart’s MPI-IS. “This led us to explore new methods to guide micromotors using surface alterations.”

Using a microfabrication process, the researchers modified surfaces to create a series of indentations or steps, several times smaller than the radius of the particle, which a specific type of micromotors – Janus particles, whose surfaces have two or more distinct physical properties – can use as signals to follow a particular path. This strategy is inspired by the one used by molecular motors in natural systems, where inside the cell, motor proteins bind to the cytoskeleton filaments to achieve directional motion.

The Janus particles are prepared by coating half of a silica particle with platinum. While the platinum face acts as a catalyst in hydrogen peroxide, the silica side remains inert, an asymmetry in chemical properties that leads to a self-propelled motion of these colloids.

The researchers noticed that the particles tend to have a stable orientation parallel to the surface, and exploited this phenomenon to guide the particles along sub-micron sized steps. They were able to demonstrate that the chemical activity of the particles and the associated hydrodynamic interactions with the nearby surfaces are responsible for the observed phenomenon.

“This finding opens up the possibility of guiding these particles along complex pathways using small changes in the surface,” explains Samuel. “This can have significant implications for the design of new artificial micromotors for a variety of applications.”

Publication:
Simmchen, J., Katuri, J., Uspal, W.E., Popescu, M.N., Tasinkevych, M., and Sanchez, S. (2016). Sculpted topographical pathways guide chemical microswimmers. Nature Communications Volume: 7, Article number: 10598, DOI:10.1038/ncomms10598

Weitere Informationen:

http://www.nature.com/ncomms/2016/160209/ncomms10598/full/ncomms10598.html
http://www.is.mpg.de/de/sanchez

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>