Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microevolutionary evidence: The eyes have it

23.11.2015

Larger eye size is the source of a sizable reproductive advantage for a tiny freshwater crustacean

For a beholder who is an evolutionary biologist, the eye is has long been a fascinating puzzle because of the many parts that must seamlessly work together for the whole to work properly. Biologists have addressed the question of ocular evolution with comparisons between different species, or macroevolutionary studies, and shown how the evolutionary process can be broken down into discrete steps through which a simple light-sensitive cell can evolve into a complex, multicomponent eye through adaptation.


In the freshwater crustacean Daphnia obtusa Kurz, larger eye size was shown to be the source of a sizable reproductive advantage.

Credit: University of South Carolina

In contrast, hard data for how the process might work within individual species -- a microevolutionary approach to the eye's evolution, that is -- have only just arrived. A research team led by biology professor Jeff Dudycha recently published a paper in the Journal of Evolutionary Biology showing that larger eye size lends a sizable reproductive advantage to individuals of a particular species.

"What also turned out to be interesting is that we were also able to measure the effect of variation in body size, and it turns out that the effect of eye size was greater than the effect of body size," Dudycha says. "Within ecology and evolution, everybody understands that body size is related to reproductive output. Larger individuals can produce more offspring, and that's true over a wide variety of organisms. So here was something that everybody knew and understood affected reproductive success, and we have data that said that eye size, which nobody had looked at anywhere as far as we can tell, had a bigger effect."

The focus of the research team was a tiny freshwater crustacean, Daphnia obtusa Kurz. Just 1 to 2 millimeters long, Daphnia would be hard to spot except for one distinguishing feature: its black eye, which is large for its body size.

"A big eye is costly to maintain, because any kind of neurological tissue, including retinal tissue, is energetically demanding relative to other kinds of tissue," Dudycha says. "And we also know there are organisms, like blind cave fish, that once had eyes and have moved into environments without any light at all, and they lose their eyes, which wouldn't happen unless there was a cost to having an eye. So if there is a cost to keep having eyes, there needs to be some kind of benefit, and we were wondering if we could measure that benefit."

The team, which included graduate student Chris Brandon and summer undergraduate researcher Tiesha James, did that by collecting more than 200 female Daphnia individuals from a pond in South Carolina's Congaree National Park and determining both eye diameter and clutch size, or the number of eggs each carried.

The correlation was clear: an increase in eye diameter of 20 micrometers, which is about one standard deviation of the mean diameter, translated into about one more egg beyond the average of about six.

They went further by doing laboratory work with collected specimens to ensure that the variation of eye size in the wild wasn't a result of other factors, such as differing light or nutrient availability among juveniles. Their results demonstrated that genetic variation is a substantial driver of differences in eye size and reproduction.

The study provides a quantitative foundation for eye microevolution where it had been lacking , Dudycha says.

"The macroevolutionary approach shows differences in eyes that are much larger, that are big jumps compared to what we looked at," he says. "We were looking at the question, 'Are there tiny little steps that connect the big jumps?' And what we found was, there were."

Media Contact

Steven Powell
spowell2@mailbox.sc.edu
803-777-1923

 @UofSC

http://www.sc.edu/ 

Steven Powell | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>