Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial Communities for Health and Environment : Precise Measurements of Microbial Ecosystems

26.11.2014

The Luxembourg Centre for Systems Biomedicine (LCSB) has succeeded for the first time in describing the complex relationships within an ecosystem in unprecedented detail. For their work, carried out in collaboration with US and Luxembourg partners, their model ecosystem was a “biological wastewater treatment plant”. In it live numerous species of bacteria which are involved in the wastewater purification process. The researchers publish their results today in the journal “Nature Communications”.

LCSB director Prof. Dr. Rudi Balling stresses the medical importance of these research efforts: “Bacterial ecosystems also play a major role in our health. We now have a better understanding of the laws governing their function.”


The LCSB researchers analyzed the genetic material of the different bacteria living in waste water treatment plant. (c) University of Luxembourg - LCSB

With their findings, the LCSB group of Prof. Dr. Paul Wilmes, head of the LCSB group “Ecosystems Biology” and ATTRACT-fellow of the Luxembourg National Research Fund (FNR), corroborate and unify various ecological concepts that have been primarily formulated based on observations in macrobiotic systems such as forests, rivers and oceans – which cannot however be experimentally investigated in depth because of the sheer size of these biotopes.

For their analyses of the treatment plant ecosystem, the researchers employed Systems Biology methods. Wastewater destined for treatment comprises energy-rich substrates including fats, proteins, carbohydrates and many other substances that serve as nutrients for the resident bacteria. Every wastewater treatment plant is therefore a complex ecosystem. Countless bacterial species adapt to the living conditions in the water, compete for resources and each find a niche in which they can best survive.

“The techniques developed at LCSB allow us now to unravel these processes very precisely at the molecular level,” says Dr. Emilie Muller, first author of the publication. The basis for this are the so-called “omics” – genomics, transcriptomics, proteomics and metabolomics – combined with new bioinformatic methods for integrated data analysis.

“With these, we can determine from samples which organisms are living in the treatment plant, and what their population sizes, genetic make-up, activities and material turnovers are like. Therefore, there is no longer any need to study bacteria separately in pure cultures,” Muller explains: “Based on this, we can ultimately model the material flows in the ‘treatment plant’ ecosystem and describe, for example, which bacterial species will use and consume which substrate and to what degree.”

Yet Emilie Muller wants to go further than simply modelling the wastewater treatment plant ecology: “We want to understand what factors determine the species composition and accordingly the balance in the ecosystem.” In this context, there is one species of bacteria that stands out and has grabbed the researchers’ attention: Microthrix parvicella, whose genome sequence the LCSB group first decrypted two years ago. This bacterium can absorb and store an especially large amount of lipids.

In winter, up to 50 percent of all bacteria on the surface of treatment tanks belong to this species. Emilie Muller continues: “That is rather astonishing, given that the amount of lipids in the wastewater is rather low in winter, and Microthrix actually has unfavourable living conditions during that season.” In their studies, Muller and colleagues then discovered that Microthrix possesses twenty-eight copies of the gene that is chiefly responsible for lipid uptake. “However, there are only ever a few of these homologous genes active at a given time and this fine-tuning is responsible for Microthrix’ ecological success,” Muller adds.

Paul Wilmes gives an interpretation of these facts: “Microthrix is what ecologists call a generalist. The organism can adapt to very many living conditions and thereby dominate the highly fluctuating wastewater treatment plant ecosystem.” This is helped, among other things, by the 28 genes for lipid uptake, Wilmes continues: “Each copy of the gene is a little different from the others. If the living conditions change, say when the temperature drops or the lipid composition changes, then a different lipid uptake gene adapted to that condition sets in. That way, Microthrix can survive in many different environments.” Wilmes’ aim is to boost the activity of Microthrix to remove as many lipids from the wastewater as possible. “The lipids from wastewater stored in the bacteria are a renewable energy source since they can be easily converted into biodiesel, for example.”

LCSB director Prof. Dr. Rudi Balling recognizes in ecosystems research an important basis for medical issues: “Paul Wilmes and his group have here corroborated fundamental concepts of ecology with comprehensive numerical data for the first time. This is important because our health is greatly determined by bacterial ecosystems like those in the gut or on the skin. When these fragile equilibriums are thrown out of balance, it can cause illnesses. We assume this is even the case for neurodegenerative diseases such as Parkinson’s disease. With the work from our Eco-Systems Biology group, we have come a long way towards understanding these systems – and actually being able to use that knowledge one day in medicine.”

The work was primarily supported by the ATTRACT and AFR fellowship schemes of the Luxembourg National Research Fund (FNR). The project also received financial support from the Integrated Biobank of Luxembourg (IBBL) with funds from the Luxembourg Ministry of Higher Education and Research.

The University of Luxembourg, founded in 2003, is a multilingual, international research university with 6200 students and staff from all over the globe. Its research focuses on computational sciences, law and especially European law, finance, educational sciences as well as interdisciplinary research conducted by the Interdisciplinary Centre for Security, Reliability and Trust (SnT) and the Luxembourg Centre for Systems Biomedicine (LCSB).
www.uni.lu

Notes to editors

Full bibliographic information: Emilie E. L. Muller, Nicolas Pinel, Cedric C. Laczny, Michael R. Hoopmann, Shaman Narayanasamy, Laura A. Lebrun, Hugo Roume, Jake Lin, Patrick May, Nathan D. Hicks, Anna Heintz-Buschart, Linda Wampach, Cindy M. Liu, Lance B. Price, John D. Gillece, Cedric Guignard, James M. Schupp, Nikos Vlassis, Nitin S. Baliga, Robert L. Moritz, Paul S. Keim & Paul Wilmes: Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage.
NATURE COMMUNICATIONS | 5:5603 | DOI: 10.1038/ncomms6603 |www.nature.com/naturecommunications. Nov 2014.


Weitere Informationen:

http://wwwen.uni.lu/lcsb  - LCSB: Luxembourg Centre for Systems Biomedicine

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>