Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial Communities for Health and Environment : Precise Measurements of Microbial Ecosystems

26.11.2014

The Luxembourg Centre for Systems Biomedicine (LCSB) has succeeded for the first time in describing the complex relationships within an ecosystem in unprecedented detail. For their work, carried out in collaboration with US and Luxembourg partners, their model ecosystem was a “biological wastewater treatment plant”. In it live numerous species of bacteria which are involved in the wastewater purification process. The researchers publish their results today in the journal “Nature Communications”.

LCSB director Prof. Dr. Rudi Balling stresses the medical importance of these research efforts: “Bacterial ecosystems also play a major role in our health. We now have a better understanding of the laws governing their function.”


The LCSB researchers analyzed the genetic material of the different bacteria living in waste water treatment plant. (c) University of Luxembourg - LCSB

With their findings, the LCSB group of Prof. Dr. Paul Wilmes, head of the LCSB group “Ecosystems Biology” and ATTRACT-fellow of the Luxembourg National Research Fund (FNR), corroborate and unify various ecological concepts that have been primarily formulated based on observations in macrobiotic systems such as forests, rivers and oceans – which cannot however be experimentally investigated in depth because of the sheer size of these biotopes.

For their analyses of the treatment plant ecosystem, the researchers employed Systems Biology methods. Wastewater destined for treatment comprises energy-rich substrates including fats, proteins, carbohydrates and many other substances that serve as nutrients for the resident bacteria. Every wastewater treatment plant is therefore a complex ecosystem. Countless bacterial species adapt to the living conditions in the water, compete for resources and each find a niche in which they can best survive.

“The techniques developed at LCSB allow us now to unravel these processes very precisely at the molecular level,” says Dr. Emilie Muller, first author of the publication. The basis for this are the so-called “omics” – genomics, transcriptomics, proteomics and metabolomics – combined with new bioinformatic methods for integrated data analysis.

“With these, we can determine from samples which organisms are living in the treatment plant, and what their population sizes, genetic make-up, activities and material turnovers are like. Therefore, there is no longer any need to study bacteria separately in pure cultures,” Muller explains: “Based on this, we can ultimately model the material flows in the ‘treatment plant’ ecosystem and describe, for example, which bacterial species will use and consume which substrate and to what degree.”

Yet Emilie Muller wants to go further than simply modelling the wastewater treatment plant ecology: “We want to understand what factors determine the species composition and accordingly the balance in the ecosystem.” In this context, there is one species of bacteria that stands out and has grabbed the researchers’ attention: Microthrix parvicella, whose genome sequence the LCSB group first decrypted two years ago. This bacterium can absorb and store an especially large amount of lipids.

In winter, up to 50 percent of all bacteria on the surface of treatment tanks belong to this species. Emilie Muller continues: “That is rather astonishing, given that the amount of lipids in the wastewater is rather low in winter, and Microthrix actually has unfavourable living conditions during that season.” In their studies, Muller and colleagues then discovered that Microthrix possesses twenty-eight copies of the gene that is chiefly responsible for lipid uptake. “However, there are only ever a few of these homologous genes active at a given time and this fine-tuning is responsible for Microthrix’ ecological success,” Muller adds.

Paul Wilmes gives an interpretation of these facts: “Microthrix is what ecologists call a generalist. The organism can adapt to very many living conditions and thereby dominate the highly fluctuating wastewater treatment plant ecosystem.” This is helped, among other things, by the 28 genes for lipid uptake, Wilmes continues: “Each copy of the gene is a little different from the others. If the living conditions change, say when the temperature drops or the lipid composition changes, then a different lipid uptake gene adapted to that condition sets in. That way, Microthrix can survive in many different environments.” Wilmes’ aim is to boost the activity of Microthrix to remove as many lipids from the wastewater as possible. “The lipids from wastewater stored in the bacteria are a renewable energy source since they can be easily converted into biodiesel, for example.”

LCSB director Prof. Dr. Rudi Balling recognizes in ecosystems research an important basis for medical issues: “Paul Wilmes and his group have here corroborated fundamental concepts of ecology with comprehensive numerical data for the first time. This is important because our health is greatly determined by bacterial ecosystems like those in the gut or on the skin. When these fragile equilibriums are thrown out of balance, it can cause illnesses. We assume this is even the case for neurodegenerative diseases such as Parkinson’s disease. With the work from our Eco-Systems Biology group, we have come a long way towards understanding these systems – and actually being able to use that knowledge one day in medicine.”

The work was primarily supported by the ATTRACT and AFR fellowship schemes of the Luxembourg National Research Fund (FNR). The project also received financial support from the Integrated Biobank of Luxembourg (IBBL) with funds from the Luxembourg Ministry of Higher Education and Research.

The University of Luxembourg, founded in 2003, is a multilingual, international research university with 6200 students and staff from all over the globe. Its research focuses on computational sciences, law and especially European law, finance, educational sciences as well as interdisciplinary research conducted by the Interdisciplinary Centre for Security, Reliability and Trust (SnT) and the Luxembourg Centre for Systems Biomedicine (LCSB).
www.uni.lu

Notes to editors

Full bibliographic information: Emilie E. L. Muller, Nicolas Pinel, Cedric C. Laczny, Michael R. Hoopmann, Shaman Narayanasamy, Laura A. Lebrun, Hugo Roume, Jake Lin, Patrick May, Nathan D. Hicks, Anna Heintz-Buschart, Linda Wampach, Cindy M. Liu, Lance B. Price, John D. Gillece, Cedric Guignard, James M. Schupp, Nikos Vlassis, Nitin S. Baliga, Robert L. Moritz, Paul S. Keim & Paul Wilmes: Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage.
NATURE COMMUNICATIONS | 5:5603 | DOI: 10.1038/ncomms6603 |www.nature.com/naturecommunications. Nov 2014.


Weitere Informationen:

http://wwwen.uni.lu/lcsb  - LCSB: Luxembourg Centre for Systems Biomedicine

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>