Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial colonization measures

12.11.2014

Spodoptera larvae actively biosynthesize an iron chelator, thereby directly influencing their gut flora

Iron is important for every organism. In animals and humans, it controls hematosis and oxygen transport. However, iron ions also influence the community of microorganisms in the gut, the so-called microbiome.

Gut bacteria require iron ions to grow and proliferate, and now scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have provided evidence that insects of the Noctuidae family produce a substance in their gut tissue, an aromatic quinoline carboxylic acid, that binds iron ions, thus directly controlling the growth of gut microbes.

The control of iron availability in the gut is probably a widespread principle. The active biosynthesis of an iron chelator, a substance that binds iron, has now been confirmed in an insect for the first time. (Organic & Biomolecular Chemistry, November 2014).

Chemical substances that bind iron ions are called iron chelators. An example of such an iron chelator is an aromatic quinoline carboxylic acid (8-hydroquinoline-2-carboxylic acid, or 8-HQA). Large numbers of 8-HQA molecules are found in the guts of Spodoptera larvae (Noctuidae) where, together with iron ions, they form a complex, one result of which is that there are fewer freely available iron ions. Because gut bacteria need iron for growth, the absence of 8-HQA directly influences the gut microflora.

Researchers have long been baffled by the enormous metabolic effort insects put into the biosynthesis of 8-HQA: Approximately 10% of tryptophan, an essential amino acid caterpillars ingest when they feed on plants, is converted into 8-HQA over an insect’s life cycle. The substance is formed in the tissue of the insect gut, however, it is not produced by gut bacteria.

“The effect on the gut microbiome is achieved by the fact that iron ions, which are necessary for microbial growth, are no longer available. For example, E. coli stops growing completely in the presence of typical 8-HQA concentrations in the gut. Only if iron ions are added, the bacteria restart growth,” said Wilhelm Boland, director of the Department of Bioorganic Chemistry.

Controlling iron availability is an extremely important mechanism for manipulating bacterial growth in microhabitats, such as animal guts where these bacteria live. Proof that a substance which controls iron is actively synthesized in the guts of Spodoptera larvae suggests that similar mechanisms likely also exist in other animals. [AO]

Original Publication:
Pesek, J., Svoboda, J., Sattler, M., Bartram, S., Boland, W. (2014). Biosynthesis of 8-hydroxyquinoline-2-carboxylic acid, an iron chelator from the gut of the lepidopteran Spodoptera littoralis. Organic & Biomolecular Chemistry. doi: 10.1039/c4ob01857e.
http://dx.doi.org/10.1039/c4ob01857e

Further Information:
Prof. Dr. Wilhelm Boland, Max Planck Institute for Chemical Ecology, e-mail boland@ice.mpg.de, Tel.: +49 3641 57 1201


Weitere Informationen:

http://www.ice.mpg.de/ext/1173.html?&L=1

Angela Overmeyer | Max-Planck-Institut

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>