Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbial colonization measures


Spodoptera larvae actively biosynthesize an iron chelator, thereby directly influencing their gut flora

Iron is important for every organism. In animals and humans, it controls hematosis and oxygen transport. However, iron ions also influence the community of microorganisms in the gut, the so-called microbiome.

Gut bacteria require iron ions to grow and proliferate, and now scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have provided evidence that insects of the Noctuidae family produce a substance in their gut tissue, an aromatic quinoline carboxylic acid, that binds iron ions, thus directly controlling the growth of gut microbes.

The control of iron availability in the gut is probably a widespread principle. The active biosynthesis of an iron chelator, a substance that binds iron, has now been confirmed in an insect for the first time. (Organic & Biomolecular Chemistry, November 2014).

Chemical substances that bind iron ions are called iron chelators. An example of such an iron chelator is an aromatic quinoline carboxylic acid (8-hydroquinoline-2-carboxylic acid, or 8-HQA). Large numbers of 8-HQA molecules are found in the guts of Spodoptera larvae (Noctuidae) where, together with iron ions, they form a complex, one result of which is that there are fewer freely available iron ions. Because gut bacteria need iron for growth, the absence of 8-HQA directly influences the gut microflora.

Researchers have long been baffled by the enormous metabolic effort insects put into the biosynthesis of 8-HQA: Approximately 10% of tryptophan, an essential amino acid caterpillars ingest when they feed on plants, is converted into 8-HQA over an insect’s life cycle. The substance is formed in the tissue of the insect gut, however, it is not produced by gut bacteria.

“The effect on the gut microbiome is achieved by the fact that iron ions, which are necessary for microbial growth, are no longer available. For example, E. coli stops growing completely in the presence of typical 8-HQA concentrations in the gut. Only if iron ions are added, the bacteria restart growth,” said Wilhelm Boland, director of the Department of Bioorganic Chemistry.

Controlling iron availability is an extremely important mechanism for manipulating bacterial growth in microhabitats, such as animal guts where these bacteria live. Proof that a substance which controls iron is actively synthesized in the guts of Spodoptera larvae suggests that similar mechanisms likely also exist in other animals. [AO]

Original Publication:
Pesek, J., Svoboda, J., Sattler, M., Bartram, S., Boland, W. (2014). Biosynthesis of 8-hydroxyquinoline-2-carboxylic acid, an iron chelator from the gut of the lepidopteran Spodoptera littoralis. Organic & Biomolecular Chemistry. doi: 10.1039/c4ob01857e.

Further Information:
Prof. Dr. Wilhelm Boland, Max Planck Institute for Chemical Ecology, e-mail, Tel.: +49 3641 57 1201

Weitere Informationen:

Angela Overmeyer | Max-Planck-Institut

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>