Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial colonization measures

12.11.2014

Spodoptera larvae actively biosynthesize an iron chelator, thereby directly influencing their gut flora

Iron is important for every organism. In animals and humans, it controls hematosis and oxygen transport. However, iron ions also influence the community of microorganisms in the gut, the so-called microbiome.

Gut bacteria require iron ions to grow and proliferate, and now scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have provided evidence that insects of the Noctuidae family produce a substance in their gut tissue, an aromatic quinoline carboxylic acid, that binds iron ions, thus directly controlling the growth of gut microbes.

The control of iron availability in the gut is probably a widespread principle. The active biosynthesis of an iron chelator, a substance that binds iron, has now been confirmed in an insect for the first time. (Organic & Biomolecular Chemistry, November 2014).

Chemical substances that bind iron ions are called iron chelators. An example of such an iron chelator is an aromatic quinoline carboxylic acid (8-hydroquinoline-2-carboxylic acid, or 8-HQA). Large numbers of 8-HQA molecules are found in the guts of Spodoptera larvae (Noctuidae) where, together with iron ions, they form a complex, one result of which is that there are fewer freely available iron ions. Because gut bacteria need iron for growth, the absence of 8-HQA directly influences the gut microflora.

Researchers have long been baffled by the enormous metabolic effort insects put into the biosynthesis of 8-HQA: Approximately 10% of tryptophan, an essential amino acid caterpillars ingest when they feed on plants, is converted into 8-HQA over an insect’s life cycle. The substance is formed in the tissue of the insect gut, however, it is not produced by gut bacteria.

“The effect on the gut microbiome is achieved by the fact that iron ions, which are necessary for microbial growth, are no longer available. For example, E. coli stops growing completely in the presence of typical 8-HQA concentrations in the gut. Only if iron ions are added, the bacteria restart growth,” said Wilhelm Boland, director of the Department of Bioorganic Chemistry.

Controlling iron availability is an extremely important mechanism for manipulating bacterial growth in microhabitats, such as animal guts where these bacteria live. Proof that a substance which controls iron is actively synthesized in the guts of Spodoptera larvae suggests that similar mechanisms likely also exist in other animals. [AO]

Original Publication:
Pesek, J., Svoboda, J., Sattler, M., Bartram, S., Boland, W. (2014). Biosynthesis of 8-hydroxyquinoline-2-carboxylic acid, an iron chelator from the gut of the lepidopteran Spodoptera littoralis. Organic & Biomolecular Chemistry. doi: 10.1039/c4ob01857e.
http://dx.doi.org/10.1039/c4ob01857e

Further Information:
Prof. Dr. Wilhelm Boland, Max Planck Institute for Chemical Ecology, e-mail boland@ice.mpg.de, Tel.: +49 3641 57 1201


Weitere Informationen:

http://www.ice.mpg.de/ext/1173.html?&L=1

Angela Overmeyer | Max-Planck-Institut

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>