Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe may explain evolutionary origins of DNA folding

11.08.2017

In the cells of palm trees, humans, and some single-celled microorganisms, DNA gets bent the same way. Now, by studying the 3-D structure of proteins bound to DNA in microbes called Archaea, University of Colorado Boulder and Howard Hughes Medical Institute (HHMI) researchers have turned up surprising similarities to DNA packing in more complicated organisms.

"If you look at the nitty gritty, it's identical," said Karolin Luger, a professor of Chemistry and Biochemistry at the University of Colorado Boulder and an HHMI Investigator. "It just blows my mind."


Archaea wrap their DNA (yellow) around proteins called histones (blue), shown above in a 3-D representation. The wrapped structure bears an uncanny resemblance to the eukaryotic nucleosome, a bundle of eight histone proteins with DNA spooled around it. But unlike eukaryotes, archaea wind their DNA around just one histone protein, and form a long, twisting structure called a superhelix.

Credit: Francesca Mattiroli

The archaeal DNA folding, described today in the journal Science, hints at the evolutionary origins of genome folding, a process that involves bending DNA and one that is remarkably conserved across all eukaryotes (organisms that have a defined nucleus surrounded by a membrane).

Like Eukarya and Bacteria, Arachaea represent one of the three domains of life. But Archaea are thought to include the closest living relatives to an ancient ancestor that first hit on the idea of folding DNA.

Scientists have long known that cells in all eukaryotes, from fish to trees to people, pack DNA in exactly the same way. DNA strands are wound around a 'hockey puck' composed of eight histone proteins, forming what's called a nucleosome. Nucleosomes are strung together on a strand of DNA, forming a "beads on a string" structure. The universal conservation of this genetic necklace raises the question of its origin.

If all eukaryotes have the same DNA bending style, "then it must have evolved in a common ancestor," said study co-author John Reeve, a microbiologist at Ohio State University. "But what that ancestor was, is a question no one asked."

Earlier work by Reeve had turned up histone proteins in archaeal cells. But, archaea are prokaryotes (microgorganisms without a defined nucleus), so it wasn't clear just what those histone proteins were doing. By examining the detailed structure of a crystal that contained DNA bound to archaeal histones, the new study reveals exactly how DNA packing works.

Luger and her colleagues wanted to make crystals of the histone-DNA complex in Methanothermus fervidus, a heat-loving archaeal species. Then, they wanted to bombard the crystals with X-rays. This technique, called X-ray crystallography, yields precise information about the position of each and every amino acid and nucleotide in the molecules being studied. But growing the crystals was tricky (the histones would stick to any given stretch of DNA, making it hard to create consistent histone-DNA structures), and making sense of the data they could get was no easy feat.

"It was a very gnarly crystallographic problem," said Luger.

Yet Luger and her colleagues persisted. The researchers revealed that despite using a single type of histone (and not four as do eukaryotes), the archaea were folding DNA in a very familiar way, creating the same sort of bends as those found in eukaryotic nucleosomes.

But there were differences, too. Instead of individual beads on a string, the archaeal DNA formed a long superhelix, a single, large curve of already twisty DNA strands.

"In Archaea, you have one single building block," Luger said. "There is nothing to stop it. It's almost like it's a continuous nucleosome, really."

This superhelix formation, it turns out, is important. When CU Boulder postdoctoral researcher Francesca Mattiroli, together with Thomas Santangelo's lab at Colorado State University, created mutations that interfered with this structure, the cells had trouble growing under stressful conditions. What's more, the cells seemed to not be using a set of their genes properly.

"It's clear with these mutations that they can't form these stretches," Mattiroli said.

The results suggest that the archaeal DNA folding is an early prototype of the eukaryotic nucleosome.

"I don't think there's any doubt that it's ancestral," Reeve said.

Still, many questions remain. Luger says she'd like to look for the missing link -- a nucleosome-like structure that bridges the gap between the simple archaeal fold and the elaborate nucleosome found in eukaryotes, which can pack a huge amount of DNA into a small space and regulate gene behavior in many ways.

"How did we get from here to there?" she asks.

###

*This release was written by the Howard Hughes Medical Institute and is re-used with permission.*

Howard Hughes Medical Institute | EurekAlert!

Further reports about: DNA DNA strands Eukaryotes crystals histone proteins proteins

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>