Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method reveals what bacteria sense in their surroundings

12.06.2015

Knowing how environmental signals modulate bacterial behavior could help combat biofouling and antibiotic resistance

A new, rapid method is helping detect how bacteria sense and respond to changes in their environment.


In a screening method to detect signals that regulate bacteria behavior, a biosensor is at work in Salmonella.

Credit: Erez Mills/Miller Lab/Univ. of Wash.

Bacteria can pick up external signals, which then relay to internal signaling pathways that direct their behavior. This surveillance also can trigger survival tactics for a variety of harsh situations, such as lack of nutrients or the presence of antibiotics.

In a cover article published June 9 in Science Signaling, microbiologists expressed particular interested in the sensing done by the food-poisoning bacteria, Salmonella. The pathogen is adept at adjusting to different locations and surrounding conditions. One of its safety strategies is to gather into a biofilm: a collection of bacteria huddled together in a protective coating.

Salmonella biofilms can grow persistently on many surfaces and can make the pathogen resistant to infection control measures. This is significant problem in the food-processing industry. According to the Centers for Disease Control and Prevention, Salmonella causes more than 1.2 million episodes of illness a year in the United States alone.

To adapt so readily, noted the authors of the report, Salmonella typhimurium bacteria need to figure out if they are in the stomach, within cells, or on a plant or other surface. Salmonella typhimurium is the most studied bacterial pathogen; yet, the researchers added, little is known about what Salmonella typhimurium senses in the environment.

The researchers were Erez Mills, Erik Petersen, and Bridget R. Kulasekara, working in the University of Washington laboratory of Samuel I. Miller, professor of medicine, microbiology, immunology, and genome sciences.

They describe a new screen they designed to identify the environmental cues Salmonella picks up and that, in turn, modulate the production of a second messenger molecule.

This molecule, cyclic-di-GMP, governs bacterial motility and biofilm formation in many species of bacteria in response to environmental conditions, but up to now specific signals that modulate cyclic-di-GMP in Salmonella were largely unknown.

The researchers discovered that many environmental signals modulate cyclic-di-GMP in Salmonella typhimurium and subsequently altered its biofilm formation.

Their screen for these signals and their actions was based on a combination of leading-edge technologies, including a genetically engineered biosensor for cyclic-di-GMP, used with either microscopy or flow cytometry, a laser-based measurement on single cells suspended in a fluid.

"The most interesting signal we identified was L-arginine, one of the twenty commonly used amino acids," the researchers noted. They explained that Salmonella typhimurium specifically responds to very low concentrations of L-arginine, in amounts too little to be utilized as a nutrient source.

The researchers think the sensing of these low levels of L-arginine tells the bacterium that it is in a certain type of environment and prompts the bacterium to adapt accordingly.

Future work, they said, will be aimed at determining the types of environments where L-arginine is sensed, as well as the bacterium's behavior in response to L-arginine.

In addition to providing new information on how Salmonella typhimurium senses chemical signals in its environment, the method the scientists designed can be used in studies of other bacterial species to increase knowledge about microbial sensing.

Possible applications range from combating antibiotic resistant bacteria to ameliorating agricultural and industrial biofouling.

###

The work is reported in the Science Signaling paper, "A direct screen for c-di-GMP modulators reveals a Salmonella typhimurium periplasmic L-arginine-sensing pathway" and discussed in the commentary, "Small molcules with big effects," by Ute Romling of the Karolinska Institute in Sweden.

Media Contact

Leila Gray
leilag@u.washington.edu
206-685-0381

http://hsnewsbeat.uw.edu/ 

Leila Gray | EurekAlert!

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>