Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metabolomics in Brain Research: What hundreds of biomolecules tell us about our nerve cells


Researchers at the Luxembourg Centre for Systems Biomedicine (LCSB), of the University of Luxembourg, have, under Dr. Manuel Buttini, successfully measured metabolic profiles, or the metabolomes, of different brain regions, and their findings could help better understand neurodegenerative diseases. The metabolome represents all or at least a large part of the metabolites in a given tissue, and thus, it gives a snapshot of its physiology.

„Our results, obtained in the mouse, are promising“, says Manuel Buttini: “They open up new opportunities to better understand neurodegenerative diseases, such as Parkinson’s, and could offer new ways to intervene therapeutically. In addition, with the help of metabolic profiles, such as those we have measured, the efficacy of novel therapeutic interventions could be tested more efficiently than with more common approaches.“

The researchers have just published their results in the „American Journal of Pathology“ (Am J Pathol 2015, 185: 1-14;

Neurodegenerative processes, such as those occurring in Parkinson’s disease, are characterized by pathological alterations of the brain cells: these cells lose their structure and function, a process that is accompanied by changes in their metabolism. Until now, most scientists have always focused on just one or a few aspects of the disease to better describe and understand the underlying mechanisms.

By analysing the whole metabolome however, LCSB researchers have realized a more global approach: they now can analyse hundreds of biomolecules, produced by nerve cells in upper, middle, and lower brain regions of the mouse. In the process, they not only look at healthy brains, but also at brains in which neurodegeneration occurs.

“To study the metabolite signatures of the brain, we used gas-chromatography coupled to mass spectrometry. This approach is particularly suitable for the analysis of samples from complex tissues“, explains Dr. Christian Jäger, one of the three main authors of the study. With metabolic studies, an area in which the LCSB is one of the worldwide leading institutions, one can assess known and still unknown biomolecules in tissue samples.

After the measurements, LCSB-researchers have used a bioinformatical approach known as Machine Learning to specifically derive the metabolic profile of each brain region. These efforts were spearheaded by Dr. Enrico Glaab, the second main author of the study. “We found that a multitude of different molecules together reflect a specific functional state of nerve cells in each brain region.“ By comparing their observations with microscopic analysis of pathologic processes in nerve cells, the LCSB researchers could show which particular metabolic profile is associated with the degeneration of these cells.

“It was clearly the joined efforts of experts from quite different fields, an interdisciplinary approach that is encouraged at LCSB, that made this study possible. In this case, experts in Neurobiology, Biochemistry, Molecular Biology, and Bioinformatics came together to enable the successful completion of the study“, says Dr. Alessandro Michelucci, the third main author of the study.

“Our observations are important, on the one hand, for paving the way for the discovery of novel therapeutic opportunities to combat neurodegeneration“, says Dr. Manuel Buttini, “and, on the other hand, for the development of new drugs to fight diseases such as Parkinson’s or Alzheimer’s. Indeed, by analysing metabolite profiles rather than just microscopic cellular changes or individual biomolecules, a better understanding of the effect of novel therapeutics for brain diseases should be feasible.“

Weitere Informationen: - Link to the scientic publication - Homepage of the Luxembourg Centre for Systems Biomedicine

Britta Schlüter | Universität Luxemburg - Université du Luxembourg

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>