Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory loss enables the production of stem cells

10.12.2015

In a study published in this week’s edition of NATURE, scientists from the Research Institutes of Molecular Biotechnology (IMBA) and Molecular Pathology (IMP) in Vienna and from the Harvard Medical School in Boston have identified a long-sought “roadblock factor” in stem cell engineering that prevents the conversion of adult cells into induced pluripotent stem cells. By suppressing this factor, the team discovered a way to erase the memory of cells, which makes it much easier to convert any cell into a stem cell.

Stem cells have the potential to develop into any specialized cell type, which makes them a valuable resource in research and regenerative medicine. Since such pluripotent cells can usually be only found in embryonic tissue prior to implantation, their isolation raises ethical concerns.


The CAF-1 complex preserves the identity of cells. Suppression of CAF-1 erases the memory of cells and makes them susceptible to reprogramming into pluripotent stem cells.

IMP-IMBA

In 1996, Dolly the sheep proved that genetic information from mature somatic cells can be used to generate pluripotent stem cells that in turn develop into an entire animal. In 2006, the Japanese physician Shinya Yamanaka discovered that somatic cells can be directly “reprogrammed” into a pluripotent state using four stem cell factors. The ability to create these induced pluripotent stem cells (iPS cells) revolutionized stem cell biology and was awarded the Nobel Prize in 2012.

The search for a roadblock-factor

While iPS cells are a powerful resource for biomedical research and tissue engineering, their production typically involves slow and inefficient protocols, which remains a major limitation of this technology. As a possible solution to this problem, researchers have long thought of so-called “roadblock-factors” that prevent the conversion from normal tissue into pluripotent stem cells. However, the precise factors forming this roadblock and their mechanism of action so far are poorly understood.

To search for the missing factor(s), scientists at the Vienna Biocenter (VBC) and Harvard University sought to employ newly developed genetic screening methods. In early 2014, they formed a research team combining unique expertise and experimental reagents: Ulrich Elling and Josef Penninger at IMBA are experts in high-throughput genetic screens and stem cell biology; Johannes Zuber from the IMP has led several successful cancer screens using genetic libraries his team has developed at the VBC; and Konrad Hochedlinger from Harvard University is a world leader in iPS cell reprogramming and, together with his postdoc Sihem Cheloufi, has established unique reagents and assays to study this process.

Cells don’t forget where they come from

As prime candidates in the search for roadblock-factors, the team decided to focus on so-called chromatin regulators - genes that control the packaging and bookmarking of DNA, which is known to underlie the “epigenetic memory” of a cell.

“Cells have a certain level of memory,” explains Johannes Zuber. “For example, a skin cell knows it is a skin cell, even after Yamanaka factors have been introduced. We wanted to find out which chromatin factors stabilize this memory and which mechanism prevents iPS cells from forming.” To answer this question, the team established a genetic library targeting 615 known chromatin regulators, and designed a sophisticated screening approach that allowed to test each of these factors.

The results of this screen were striking: Among 615 genes, four factors clearly stood out as top hits. Of those, only one had previously been described as a candidate roadblock. The new hits include CHAF1A and CHAF1B, forming the CAF-1-complex (chromatin assembly factor 1), and UBE2I (ubiquitin-conjugating enzyme E2I).

When the researchers thoroughly tested these genes, the effects were stunning: While inhibiting previously described roadblock-genes increases iPSC reprogramming three- to fourfold, losing CAF-1 or UBE2I made this process 50- to 200-fold more efficient. Moreover, in the absence of CAF-1, reprogramming turned out to be much faster: While the process normally takes about nine days, the researchers in Vienna could detect the first iPS cells already after four days.

A long-awaited breakthrough

“The CAF-1 complex ensures that during DNA replication and cell division daughter cells keep their epigenetic memory, which is encoded on the histones that the DNA is wrapped around,” explains Ulrich Elling. “When we block CAF-1, daughter cells fail to wrap their DNA the same way, lose this information, and convert into blank sheets of paper. In this state, they respond more sensitively to signals from the outside, meaning we can manipulate them much more easily.”

In finding CAF-1, the researchers identified a complex that allows cell memory to be erased and rewritten, which is a long-awaited breakthrough for stem cell research. In their study, the team demonstrated how suppression of the CAF-1-complex turns the slow and inefficient production of iPS cells into a straight-forward method.

But the significance of this discovery probably goes beyond this important application. The authors speculate that CAF-1 may provide a general key to facilitate the “reprogramming” of cells in scenarios such as tissue damage and disease. As Josef Penninger puts it: “The best-case scenario is that with this insight, we hold a universal key in our hands that will allow us to model cells at will.”


Original Publication
The paper “The histone chaperone CAF-1 safeguards somatic cell identity” by Cheloufi & Elling et al. will be published in Nature on December 10, 2015.

About IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 35 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology. The IMP is located at the Vienna Biocenter.

About IMBA
The Institute of Molecular Biotechnology (IMBA) is a research institute that conducts basic research in molecular biology. It was founded in 1999 as a 100% subsidiary of the Austrian Academy of Sciences (ÖAW) in the legal form of a limited liability company. Today it is the largest Institute of the ÖAW.In 13 interdisciplinary groups, the researchers at IMBA focus on stem cell biology and investigate cellular processes like RNA interference, cell division and epigenetics. Potential fields of application include major disease areas such as inflammation, autoimmune disorders, cardiovascular and neurodegenerative diseases, and cancer.


Media Contact at the IMP
Dr. Heidemarie Hurtl
IMP Communications
hurtl@imp.ac.at
+43 (0)1 79730 3625

Media Contact at IMBA
Dr. Sophie Hanak, M.sc.
IMBA Communications
sophie.hanak@imba.oeaw.ac.at
+43 (0) 1 79044 3628

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>