Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mechanism of biological multi-fuel engine


Elucidating flagellar motor ion transfer process

University of Tokyo researchers have constructed the atomic model structure of the protein complex that corresponds to the stator (stationary part of a motor that surrounds the rotating part of a motor) of the E. coli flagellar motor for the first time by molecular simulation based on previously published experimental data, and elucidated the mechanism by which ions, including hydrogen ions (protons), are transferred through the stator.

Proton permeation through flagellar motor stator complex MotA/B. Based on the model of the three-dimensional structure of MotA/B identified in this research, protons can permeate through the gate (green) of the motor by diffusion of hydronium ions (blue), which induces the formation of a water wire (red and white) that may mediate the proton transfer to the proton binding site (yellow). © 2015 Yasutaka Nishihara and Akio Kitao.

Bacteria such as E. coli and Salmonella swim by rotating flagellar motors and filaments, which highly efficiently utilize the energy originating from the difference in ion concentration between the cell interior and exterior.

Among the bacterial flagellar motors, some convert the energy by the permeation of protons through the motor stator, while others utilize sodium ions or multiple ions. However, the atomic structure of the bacterial flagellar motor remained unknown, and the mechanism of ion permeation had not been elucidated in detail.

Project Researcher Nishihara Yasutaka at the Graduate School of Arts and Sciences and Associate Professor Akio Kitao at the Institute of Molecular and Cellular Biosciences constructed a three-dimensional model structure of the protein complex that comprises the flagellar motor stator MotA/B, and found that protons permeate through the transmembrane stator as hydronium ions, inducing a motion similar to a ratchet wrench (ratchet movement) limited to one directional rotation.

Investigation of this type of highly efficient energy conversion mechanism is essential to understand biological mechanisms which can utilize energy efficiently.


Nishihara Yasutaka and Akio Kitao, "Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor", Proceedings of the National Academy of Science of the United States of America Online Edition: 2015/6/9 (Japan time), doi: 10.1073/pnas.1502991112.

Associated links
U Tokyo Research article

Euan McKay | ResearchSEA
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>