Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC and Charité Researchers Tweak the Immune System to Target Cells Bearing Tumor Antigens

19.03.2015

Researchers at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Charité – Universitätsmedizin Berlin, Campus Berlin-Buch, have succeeded in generating cells of the immune system to specifically target and destroy cancer cells.

The research findings of Matthias Obenaus, Professor Thomas Blankenstein (MDC and Charité), Dr. Matthias Leisegang (MDC) and Professor Wolfgang Uckert (Humboldt-Universität zu Berlin and MDC) as well as Professor Dolores Schendel (Medigene AG, Planegg/Martinsried) have now been published in Nature Biotechnology online (doi:10.1038/nbt.3147)*.


This mouse possesses “high-affinity” components of the human immune system to fight cancer. (Photo and Copyright: SFB-TR 36)

The immune system of the body is trained to distinguish between “foreign” and “self” and to recognize and destroy exogenous structures. In cancer, however, the immune system appears to be quite docile in its response.

While it is capable of detecting cancer cells because they often bear characteristics (antigens) on their surfaces that identify them as pathologically altered cells, usually the immune system does not mount an attack but rather tolerates them. The reason: The cancer cells are endogenous to the body, and immune cells do not recognize them as foreign, as they would pathogens. The researchers want to break this tolerance in order to develop therapies against cancer.

T cells are the linchpin in the attack of the immune system. On their surface they have anchor molecules (receptors) with which they recognize foreign structures, the antigens of bacteria or viruses, and thus can target and destroy invaders. Cancer researchers and immunologists are attempting to mobilize this property of the T cells in the fight against cancer. The objective is to develop T cells that specifically recognize and attack only cancer cells but spare other body cells.

Now Matthias Obenaus, Professor Blankenstein, Dr. Leisegang, Professor Uckert and Professor Schendel have developed human T cell receptors (TCRs) that have no tolerance toward human cancer antigens and specifically recognize the antigen MAGE-A1, which is present on various human tumor cells. Instead of directly using human-derived TCRs, which do not mediate substantial anti-tumor effects, the scientists took a “detour” over a mouse model.

First, the researchers transferred the genetic information for human TCRs into the mice, thus creating an entire arsenal of human TCRs (Nature Medicine, doi: 10.1038/nm.2197). When the humanized mouse T cells come into contact with human cancer cells, they perceive the tumor antigens as foreign – like viral or bacterial antigens. Thus, the T cells can specifically target, attack and destroy the tumor cells.

The researchers subsequently isolated the human T-cell receptors of these mice, which are specifically targeted toward the tumor antigen MAGE-A1. Then they transferred the T-cell receptors into human T cells, thereby training them to recognize the cancer cells as foreign.

Some people possess T cells which naturally recognize MAGE-A1 on tumor cells, but only in the Petri dish. In studies using an animal model, only the human TCRs derived from mice were shown to be effective against the tumor. The TCRs from human T cells ignored the tumor completely.

The comparison with the tweaked human TCRs from the mouse model shows that the TCRs of patients cannot recognize the tumor antigens sufficiently; they are too weak. “The fact that our TCRs from the mouse are better is a strong indication that the T cells of a human are tolerant toward MAGE-A1,” said Matthias Obenaus and Professor Blankenstein.

Using the T-cell receptors they developed, the researchers are planning an initial clinical trial with patients with MAGE-A1 positive multiple myeloma, a malignant disease of the bone marrow.

*Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice
Matthias Obenaus1, Catarina Leitão1,7, Matthias Leisegang1, Xiaojing Chen1, Ioannis Gavvovidis1 Pierre van der Bruggen2,3, Wolfgang Uckert1,4, Dolores J Schendel5 & Thomas Blankenstein1,6
1Max Delbrück Center for Molecular Medicine, Berlin, Germany. 2Ludwig Institute for Cancer Research, Brussels, Belgium. 3De Duve Institute, Université Catholique de Louvain, Brussels, Belgium. 4Institute of Biology, Humboldt University, Berlin, Germany. 5Medigene AG, Planegg/Martinsried, Germany. 6Institute of Immunology, Charité Campus Buch, Berlin, Germany. 7Present address: Institute for Molecular and Cell Biology, Porto, Portugal.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Weitere Informationen:

https://www.mdc-berlin.de/34982086/en/news/archive/2010/20100806-more_cancer-fig...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>