Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Max Planck researchers describe new molecular shuttle service

19.11.2014

They are tiny and hairy and sit on almost all of our cells. Of course we are talking about cilia, protein structures that are key to numerous functions of our body.

If their assembly is incorrect or incomplete, patients are unable to hear and their kidneys would lose the ability to filtrate blood. Scientists at the Max Planck Institute of Biochemistry in Munich-Martinsried have now been able to elucidate a fundamental mechanism mediating the transport of new building blocks to the cilia.


Once the BBSome has uptaken the protein supply for the cilium, ARL6 (green) binds to BBS1 (blue) thus directing the BBSome to its destination. Illustration: André Mourão & Monika Krause / Copyright: MPI of Biochemistry

“The mechanism we investigated can explain how the cell provides new material for the cilia and how failures in this process lead to diseases like deafness“, says André Mourão, first author of the study.

Cilia are tiny hair-like protein structures, which reside on the surface of almost all cells of both humans and animals. They carry out a number of important tasks, like the transmission of acoustic signals within the ear, optical signal in our eyes and the movement of sperm cells.

This indicates how important these structures are. However, it also emphasizes how diseases which affect the cilia can severely impair the life of the respective patients. Bardet-Biedl Syndrome (BBS) is one such disease, in which affected individuals suffer from blindness and/or deafness, kidney failure and obesity.

Until now, researchers were able to find out that BBS is caused by alterations of a certain group of nineteen proteins (BBS1-19). In healthy cells these proteins constitute a molecular shuttle that transports new building blocks towards the cilia – the so-called BBSome.

In case the shuttle service does not work properly, the function of cilia is severely impaired. Researchers in the team of Esben Lorentzen at the MPI of Biochemistry recently identified the mechanism underlying the transport of the protein cargo in detail.

In the present study the scientists showed that the interaction of two particular proteins is necessary to deliver new building blocks to the cilia: Once the BBSome shuttle has uptaken its cargo, the molecule ARL6 is further needed to direct it to the cell surface where the cilia are located.

ARL6 docks to a certain part of the BBSome, the protein BBS1, making sure that the shuttle is carried towards its correct destination. According to the researchers this mechanism is conserved from humans to green algae. This is usually good evidence, that a feature is essential for survival.

A molecular shuttle gone astray

Esben Lorentzen gives an example, how crucial this mechanism is for our health: “Interestingly, 30 percent of all BBS patients have a mutation at a certain position of BBS1, the consquences of which were not fully understood before. We were now able to show, that this mutation affects the binding between ARL6 and BBS1, inhibiting the interaction of those two molecules.”

The scientists assume that this prevents the protein shuttle from being directed to its correct destination, subsequently leading to a lack of protein supply in the cilia and a loss of their function. In the future, the scientists hope to clarify whether other proteins are involved in the process and which potential roles they might play.
[HS]

Original publication:
A. Mourão, A.R. Nager, M.V. Nachury and E. Lorentzen: Structural basis for membrane targeting of the BBSome by ARL6. NSMB, November 17, 2014.
DOI: 10.1038/nsmb.2920

Contact
Dr. Esben Lorentzen
Intraflagellar Transport
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: lorentze@biochem.mpg.de
www.biochem.mpg.de/lorentzen

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de


Weitere Informationen:

http://www.biochem.mpg.de/lorentzen  - Research grpup "Intraflagellar Transport"
http://www.biochem.mpg.de/news  - more press Releases of the MPI of Biochemistry

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>