Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Max Planck researchers describe new molecular shuttle service

19.11.2014

They are tiny and hairy and sit on almost all of our cells. Of course we are talking about cilia, protein structures that are key to numerous functions of our body.

If their assembly is incorrect or incomplete, patients are unable to hear and their kidneys would lose the ability to filtrate blood. Scientists at the Max Planck Institute of Biochemistry in Munich-Martinsried have now been able to elucidate a fundamental mechanism mediating the transport of new building blocks to the cilia.


Once the BBSome has uptaken the protein supply for the cilium, ARL6 (green) binds to BBS1 (blue) thus directing the BBSome to its destination. Illustration: André Mourão & Monika Krause / Copyright: MPI of Biochemistry

“The mechanism we investigated can explain how the cell provides new material for the cilia and how failures in this process lead to diseases like deafness“, says André Mourão, first author of the study.

Cilia are tiny hair-like protein structures, which reside on the surface of almost all cells of both humans and animals. They carry out a number of important tasks, like the transmission of acoustic signals within the ear, optical signal in our eyes and the movement of sperm cells.

This indicates how important these structures are. However, it also emphasizes how diseases which affect the cilia can severely impair the life of the respective patients. Bardet-Biedl Syndrome (BBS) is one such disease, in which affected individuals suffer from blindness and/or deafness, kidney failure and obesity.

Until now, researchers were able to find out that BBS is caused by alterations of a certain group of nineteen proteins (BBS1-19). In healthy cells these proteins constitute a molecular shuttle that transports new building blocks towards the cilia – the so-called BBSome.

In case the shuttle service does not work properly, the function of cilia is severely impaired. Researchers in the team of Esben Lorentzen at the MPI of Biochemistry recently identified the mechanism underlying the transport of the protein cargo in detail.

In the present study the scientists showed that the interaction of two particular proteins is necessary to deliver new building blocks to the cilia: Once the BBSome shuttle has uptaken its cargo, the molecule ARL6 is further needed to direct it to the cell surface where the cilia are located.

ARL6 docks to a certain part of the BBSome, the protein BBS1, making sure that the shuttle is carried towards its correct destination. According to the researchers this mechanism is conserved from humans to green algae. This is usually good evidence, that a feature is essential for survival.

A molecular shuttle gone astray

Esben Lorentzen gives an example, how crucial this mechanism is for our health: “Interestingly, 30 percent of all BBS patients have a mutation at a certain position of BBS1, the consquences of which were not fully understood before. We were now able to show, that this mutation affects the binding between ARL6 and BBS1, inhibiting the interaction of those two molecules.”

The scientists assume that this prevents the protein shuttle from being directed to its correct destination, subsequently leading to a lack of protein supply in the cilia and a loss of their function. In the future, the scientists hope to clarify whether other proteins are involved in the process and which potential roles they might play.
[HS]

Original publication:
A. Mourão, A.R. Nager, M.V. Nachury and E. Lorentzen: Structural basis for membrane targeting of the BBSome by ARL6. NSMB, November 17, 2014.
DOI: 10.1038/nsmb.2920

Contact
Dr. Esben Lorentzen
Intraflagellar Transport
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: lorentze@biochem.mpg.de
www.biochem.mpg.de/lorentzen

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de


Weitere Informationen:

http://www.biochem.mpg.de/lorentzen  - Research grpup "Intraflagellar Transport"
http://www.biochem.mpg.de/news  - more press Releases of the MPI of Biochemistry

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>