Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Max Planck researchers describe new molecular shuttle service


They are tiny and hairy and sit on almost all of our cells. Of course we are talking about cilia, protein structures that are key to numerous functions of our body.

If their assembly is incorrect or incomplete, patients are unable to hear and their kidneys would lose the ability to filtrate blood. Scientists at the Max Planck Institute of Biochemistry in Munich-Martinsried have now been able to elucidate a fundamental mechanism mediating the transport of new building blocks to the cilia.

Once the BBSome has uptaken the protein supply for the cilium, ARL6 (green) binds to BBS1 (blue) thus directing the BBSome to its destination. Illustration: André Mourão & Monika Krause / Copyright: MPI of Biochemistry

“The mechanism we investigated can explain how the cell provides new material for the cilia and how failures in this process lead to diseases like deafness“, says André Mourão, first author of the study.

Cilia are tiny hair-like protein structures, which reside on the surface of almost all cells of both humans and animals. They carry out a number of important tasks, like the transmission of acoustic signals within the ear, optical signal in our eyes and the movement of sperm cells.

This indicates how important these structures are. However, it also emphasizes how diseases which affect the cilia can severely impair the life of the respective patients. Bardet-Biedl Syndrome (BBS) is one such disease, in which affected individuals suffer from blindness and/or deafness, kidney failure and obesity.

Until now, researchers were able to find out that BBS is caused by alterations of a certain group of nineteen proteins (BBS1-19). In healthy cells these proteins constitute a molecular shuttle that transports new building blocks towards the cilia – the so-called BBSome.

In case the shuttle service does not work properly, the function of cilia is severely impaired. Researchers in the team of Esben Lorentzen at the MPI of Biochemistry recently identified the mechanism underlying the transport of the protein cargo in detail.

In the present study the scientists showed that the interaction of two particular proteins is necessary to deliver new building blocks to the cilia: Once the BBSome shuttle has uptaken its cargo, the molecule ARL6 is further needed to direct it to the cell surface where the cilia are located.

ARL6 docks to a certain part of the BBSome, the protein BBS1, making sure that the shuttle is carried towards its correct destination. According to the researchers this mechanism is conserved from humans to green algae. This is usually good evidence, that a feature is essential for survival.

A molecular shuttle gone astray

Esben Lorentzen gives an example, how crucial this mechanism is for our health: “Interestingly, 30 percent of all BBS patients have a mutation at a certain position of BBS1, the consquences of which were not fully understood before. We were now able to show, that this mutation affects the binding between ARL6 and BBS1, inhibiting the interaction of those two molecules.”

The scientists assume that this prevents the protein shuttle from being directed to its correct destination, subsequently leading to a lack of protein supply in the cilia and a loss of their function. In the future, the scientists hope to clarify whether other proteins are involved in the process and which potential roles they might play.

Original publication:
A. Mourão, A.R. Nager, M.V. Nachury and E. Lorentzen: Structural basis for membrane targeting of the BBSome by ARL6. NSMB, November 17, 2014.
DOI: 10.1038/nsmb.2920

Dr. Esben Lorentzen
Intraflagellar Transport
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824

Weitere Informationen:  - Research grpup "Intraflagellar Transport"  - more press Releases of the MPI of Biochemistry

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>