Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mating without males decreases lifespan

26.02.2016

Pristionchus nematodes come in two varieties: Most species consist of typical males and females, but in several species the females have evolved the ability to produce and use their own sperm for reproduction. Scientists from the Max Planck Institute of Developmental Biology in Tübingen, Germany, discovered that these so called hermaphrodites have shorter lifespans, with females frequently living over twice as long as closely related hermaphrodites.

The ways that males and females interact affects many biological processes, including the evolution of important traits like lifespan and the rate of ageing. While the male-female mating system is found in most vertebrates, and all mammals—many animal species employ alternative arrangements.


A mating pair of Pristionchus roundworms. Colored Scanning Electron Microscopy image

Jürgen Berger/ Max Planck Institute for Developmental Biology

Professor Ralf Sommer and Dr. Cameron Weadick from the Max Planck Institute of Developmental Biology are doing research on the evolutionary consequences of such differences.

They wanted to find out if self-fertilizing hermaphrodite nematodes would evolve to live longer, healthier lives; or if they would evolve shorter life cycles, characterized by quick bursts of reproduction followed by senescent decay. By comparing species that utilize different mating systems, it’s possible to see how much of a role sexual interactions play in shaping life-history evolution.

The researchers measured adult lifespan in females and hermaphrodites from eleven different Pristionchus nematode (roundworm) species. They discovered that hermaphrodites, which fertilize their own eggs with their own sperm, live significantly shorter than their female relatives.

Importantly, lifespan did not correlate with the number of offspring, indicating that the lifespan differences between females and hermaphrodites aren’t simply due to a trade-off between living long and investing in reproduction.

There are various possible reasons for the differences in lifespan. Hermaphrodites start reproducing earlier in life, as they produce sperm before adulthood, but females have to invest time to find males to mate with. Another reason relates to the costs of mating: Males can damage females during mating, and the females may need to be built especially strong in order to tolerate this, leading to the evolution of females capable of living for a long time.

Finally, decreased lifespan in hermaphrodites may be a consequence of inbreeding, which can impede natural selection and lead to the accumulation of damaging mutations. These mechanisms are not mutually exclusive, and a key challenge for future work will be to determine the relative contributions of each process. "We want to investigate the connection between survival and the mating system.

Our results set the stage for future work on the genetic basis of differences in lifespan.”, says Weadick. Apart from Pristionchus nematodes, the relation between self-fertilization and lifespan has only been investigated in plants so far. The comparison with other species might help to identifying genes that are associated with the evolution of lifespan. (Adapted from: American Society of Naturalists)

Original Publication:
Mating System Transitions Drive Life Span Evolution in Pristionchus Nematodes
http://www.journals.uchicago.edu/doi/10.1086/685283

Press contact:
Prof. Dr. Ralf Sommer
Phone: 07071 601- 441
E-mail: ralf.sommer@tuebingen.mpg.de

Nadja Winter (PR Officer)
Phone: +49 7071 601- 444
E-mail: presse-eb@tuebingen.mpg.de

Weitere Informationen:

http://www.journals.uchicago.edu/doi/10.1086/685283

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>