Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mating without males decreases lifespan

26.02.2016

Pristionchus nematodes come in two varieties: Most species consist of typical males and females, but in several species the females have evolved the ability to produce and use their own sperm for reproduction. Scientists from the Max Planck Institute of Developmental Biology in Tübingen, Germany, discovered that these so called hermaphrodites have shorter lifespans, with females frequently living over twice as long as closely related hermaphrodites.

The ways that males and females interact affects many biological processes, including the evolution of important traits like lifespan and the rate of ageing. While the male-female mating system is found in most vertebrates, and all mammals—many animal species employ alternative arrangements.


A mating pair of Pristionchus roundworms. Colored Scanning Electron Microscopy image

Jürgen Berger/ Max Planck Institute for Developmental Biology

Professor Ralf Sommer and Dr. Cameron Weadick from the Max Planck Institute of Developmental Biology are doing research on the evolutionary consequences of such differences.

They wanted to find out if self-fertilizing hermaphrodite nematodes would evolve to live longer, healthier lives; or if they would evolve shorter life cycles, characterized by quick bursts of reproduction followed by senescent decay. By comparing species that utilize different mating systems, it’s possible to see how much of a role sexual interactions play in shaping life-history evolution.

The researchers measured adult lifespan in females and hermaphrodites from eleven different Pristionchus nematode (roundworm) species. They discovered that hermaphrodites, which fertilize their own eggs with their own sperm, live significantly shorter than their female relatives.

Importantly, lifespan did not correlate with the number of offspring, indicating that the lifespan differences between females and hermaphrodites aren’t simply due to a trade-off between living long and investing in reproduction.

There are various possible reasons for the differences in lifespan. Hermaphrodites start reproducing earlier in life, as they produce sperm before adulthood, but females have to invest time to find males to mate with. Another reason relates to the costs of mating: Males can damage females during mating, and the females may need to be built especially strong in order to tolerate this, leading to the evolution of females capable of living for a long time.

Finally, decreased lifespan in hermaphrodites may be a consequence of inbreeding, which can impede natural selection and lead to the accumulation of damaging mutations. These mechanisms are not mutually exclusive, and a key challenge for future work will be to determine the relative contributions of each process. "We want to investigate the connection between survival and the mating system.

Our results set the stage for future work on the genetic basis of differences in lifespan.”, says Weadick. Apart from Pristionchus nematodes, the relation between self-fertilization and lifespan has only been investigated in plants so far. The comparison with other species might help to identifying genes that are associated with the evolution of lifespan. (Adapted from: American Society of Naturalists)

Original Publication:
Mating System Transitions Drive Life Span Evolution in Pristionchus Nematodes
http://www.journals.uchicago.edu/doi/10.1086/685283

Press contact:
Prof. Dr. Ralf Sommer
Phone: 07071 601- 441
E-mail: ralf.sommer@tuebingen.mpg.de

Nadja Winter (PR Officer)
Phone: +49 7071 601- 444
E-mail: presse-eb@tuebingen.mpg.de

Weitere Informationen:

http://www.journals.uchicago.edu/doi/10.1086/685283

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>