Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mating success for the European Mink – Scientists optimize breeding management

22.09.2015

The European mink is critically endangered throughout its range. Several reintroduction programmes are in place to help assure the survival of the species. One of these is currently underway in Estonia, where researchers from the Vetmeduni Vienna closely studied the reproductive cycle of female animals. Analysing hormones in faecal samples, the scientists confirmed for the first time that females are able to conceive three to four times a year. The results, published in the journal Theriogenology, should assist efforts to reintroduce the animals in the wild.

The European mink (Mustela lutreola) is one of the most endangered mammals in Europe. The reasons for its decline are the destruction of its habitat in riparian areas, competition with the alien American mink and historically, extensive hunting.


European Mink

Tiit Maran

The European mink is often confused with the American mink (Neovison vison, previously Mustela vison), which has successfully established itself in Europe as an escapee from fur farms. The larger and more robust American mink has nearly completely replaced the European mink in its previous range.

Species protection projects all over Europe have so far faced the problem that European minks are difficult to breed in zoos. Captivity appears to have a negative effect on breeding success. But captive-bred individuals are needed in order to release and reintroduce the animal into protective zones. “The more we know about the physiology of European minks, the better we can respond to their needs,” says lead author Franz Schwarzenberger from the Institute of Physiology, Pathophysiology and Experimental Endocrinology at the University of Veterinary Medicine, Vienna.

Faecal samples yield reproductive data

Scientists from the Vetmeduni Vienna, in cooperation with the Endangered Species Research Lab of Tallinn Zoo, collected faecal samples from European mink and analysed them in Vienna. The animals are managed under the aegis of an EEP program (European Endangered Species Program). Female oestrus is usually determined by vaginal cytology. The aim of the study was to assess the validity of this method and to optimise diagnosis of ovulation and pregnancy.

“Using our non-invasive method, we were able to measure female oestrogen levels and generate a seasonal hormone profile. The results showed that oestrogen levels are higher at the time of ovulation. Such oestrogen peaks occur three to four times a year on average. The animals are polyoestrous. That means, during the breeding season they are fertile in regular intervals. In the past, females which had already been mated with no success were not mated again that same year. Our results reveal that mating can occur much more often,” Schwarzenberger explains.

Looking for the perfect mate

European minks are solitary animals and extremely territorial in the wild, only approaching each other during the breeding season. In captivity, the animals are housed in large individual enclosures. “The exact time for mating is difficult to determine in a zoo because the animals attack each other if they aren’t receptive. In order to increase the chances of fertilisation, the females are examined at regular intervals during the mating season. During mating, we also closely observe the behaviour of the animals, especially of the males,” explains Astrid Nagl, first author of the study.

The Tallinn Zoo uses vaginal cytology to predict the time of ovulation. This method does not always yield satisfactory results, however. “The data from the faecal analysis serve to augment the available information so that some females which had previously not been mated successfully also had offspring,” Schwarzenberger reports.

Reintroduction in Europe not possible everywhere

The reintroduction of the European mink in Austria would not be easy. “In Austria, the American mink has replaced the European mink in aquatic and riparian zones,” says Schwarzenberger. Releasing the European mink in this habitat would be tantamount to a death sentence, as the American minks would defend their territory and kill the European Mink. This makes reintroduction only possible in areas where no populations of American mink exist,” says Schwarzenberger.

About 100–120 European mink live at Tallinn Zoo. The zoo’s captive-bred animals are reintroduced to the wild on the Estonian islands of Hiiumaa and Saaremaa. Another promising reintroduction project can be found at Steinhuder Meer in northwest Germany.

Service
The article “Non‐invasive monitoring of female reproductive hormone metabolites in the endangered European mink (Mustela lutreola)”, by Astrid Nagl, Nadja Kneidinger, Kairi Kiik, Heli Lindeberg, Tiit Maran and Franz Schwarzenberger was published in the journal Theriogenology. http://www.sciencedirect.com/science/article/pii/S0093691X15003817

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Franz Schwarzenberger
Institute of Physiology, Pathophysiology and Experimental Endocrinology University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4104
franz.schwarzenberger@vetmeduni.ac.at

Scientific Contact (Tallinn Zoo):
Tiit Maran, Ph.D.
Species Conservation Lab, Tallinn Zoo
phone +372 6943318
GSM +372 5066859
tiit.maran@tallinnzoo.ee

Released by:
Heike Hochhauser
Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1151
heike.hochhauser@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Heike Hochhauser | idw - Informationsdienst Wissenschaft

Further reports about: Veterinary Medicine breeding season mink

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>