Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical model helps show how zebrafish get their stripes

18.11.2015

A mathematical model developed by Brown University researchers is shedding new light on how zebrafish get their iconic stripes. The model helps to demonstrate how two dynamic processes--the movement of pigment cells across the skin, and the birth and death of cells as the fish grows--combine to keep zebrafish stripes in line.

The model is described in the Journal of the Royal Society Interface.

Zebrafish have become quite a popular model organism for biology researchers over the past few decades. The small freshwater fish begin life as transparent embryos and develop in just a few months to full size, giving scientists the chance to watch their development in detail.


A mathematical model simulates the formation of stripes over a zebrafish's lifetime. Each box represents a snapshot of the growth period.

Credit: Volkening/Sandstede/Brown University

The emergence of their namesake stripes of dark blue and bright yellow has been the subject of much research. The stripes have been shown to be the result of interplay between three types of pigment cells: black melanophores, yellow xanthophores, and silvery iridophores.

"The stripe pattern forms dynamically as the fish develops," said Alexandria Volkening, a graduate student and Brown's Division of Applied Mathematics and the lead author on the new paper. "It's not like these pigment cells are filling out some kind of prepattern that's already there. It's the interactions of the cells over time that causes the patterns to form. We wanted to build a model that simulates this based as much as possible on what's known about the biology."

... more about:
»Zebrafish »pigment cells »stem cells »stripe

The model Volkening developed treats cells as individual agents, behaving according to a set of rules derived from experiments. It directly incorporates two types of cells: the black melanophores and the yellow xanthophores. The effects of the third cell type, the iridophores, are implicit in the behavior of the other two cells, though the iridophores themselves are not physically included in the model.

The model starts with melanophores and xanthophores arranged in a way that mimics the arrangement of cells in fish just a few weeks old. The model domain then grows in a way that approximates the growth of the fish. As the domain grows, new cells are added that mimic the stem cells from which pigments are derived in actual fish.

The stem cells take cues on which type of cell to become from existing pigment cells. Those cues come both from cells in the immediate vicinity, and from cells further away. Experiments in actual fish have suggested that both short- and long-distance communication is important.

In the model, if a new stem cell is surrounded by black cells and the adjacent developing stripe regions are yellow, it has a much greater chance of becoming a dark cell itself. The same goes for yellow cells. Cell death is controlled by similar mechanism. A black cell surrounded on all sides by light ones or without sufficient yellow cells in adjacent stripe regions has a much higher probability of dying.

Experiments have shown that pigment cells also have the ability to move short distances across the fish's skin, and the model captures that dynamic as well. The pigments are thought to move according to cues communicated from surrounding cells. In the model, all of the cells repel each other, but different cell types have a stronger repulsion than like cells. The movement cues are gathered from the cells immediately surrounding a pigment cell.

Using these rules over the normal growth period of an actual fish, model was able to successfully recreate the development of stripes as seen in experiments. It was also able to recreate the results of a variety of experiments biologists have done to perturb stripe formation. For example, scientists have ablated pigment cells early in a fish's development to see how it would affect stripe development. Those experiments showed that when cells are knocked out, the fish form oblong spots rather then stripes as they continue to develop. The model was able to recreate those effects.

Once they had a model that could reconstruct actual experiments, the researchers could test how different cellular dynamics influence stripe growth.

"One thing that's not clear is the role of birth and death versus movement. Do you need both or just one?" said Bjorn Sandstede, chair of Brown's Division of Applied Mathematics and a co-author of the paper. "What we can do in the model is turn off one of the two and see what we get."

With movement turned off, the model showed that cells formed oblong blobs with no particular orientation. With birth and death turned off, like cells formed tightly packed spots rather than stripes. Taken together, the results help to confirm the interdependent dynamics of the two processes in the development of the stripe pattern.

Sandstede says that simulations like these are important because they offer a window into how complex patterns and structures form dynamically in nature. "If you look at any kind of organism, they start with oocytes, which are roundish structures with little spatial differentiation at all, and you end up with organisms like us that have a complex spatial structure," he said. "I think it's important to try to understand how spatial differentiation occurs. Zebrafish and their stripes are a good model to do that because you can identify the different cells and what they're doing in the process."

Volkening says she plans to continue to refine the model to better capture the effects of iridophores that were not directly included in the current model. She hopes the model can serve as a guide for future experiments in actual fish.

"One of the benefits of the models is that we can do this in six minutes," she said. "It takes weeks to grow the fish," Volkening said.

###

Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

Further reports about: Zebrafish pigment cells stem cells stripe

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>