Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Maple syrup protects neurons and nurtures young minds


Two young students show how maple syrup prevents the development of amyotrophic lateral sclerosis in the C. elegans worm

Catherine Aaron and Gabrielle Beaudry were 17 when they knocked on the door of the laboratory of Alex Parker, a neuroscience researcher at the University of Montreal Hospital Research Centre (CRCHUM).

Maple syrup prevents the development of amyotrophic lateral sclerosis in the C. elegans worm.

Credit: Alex Parker laboratory, CRCHUM

While students at Collège Jean-de-Brébeuf in Montreal, they were looking for a mentor for an after-school research project. Two and half years later, the results of this scientific adventure were published today in the Journal of Agricultural and Food Chemistry.

"We wanted to test the effect of a natural product on a neurodegenerative disease such as Alzheimer's. Professor Parker had already discovered that sugar prevents the occurrence of amyotrophic lateral sclerosis (ALS) in an animal model of the disease, the C. elegans worm. That's how we got the idea of maple syrup, a natural sugar produced in Quebec," said Beaudry.

Supervised by PhD student Martine Therrien and Alex Parker, Aaron and Beaudry added maple syrup to the diet of these barely 1 mm-long nematodes. "We just gave them a supplement of maple syrup at various concentrations and compared with a control group that had a normal diet," said Aaron. "After twelve days, we counted under the microscope the worms that were moving and those that were paralyzed. The worms that had consumed the highest dose of syrup were much less likely to be paralyzed."

Alex Parker's C. elegans worms are genetically modified to express a protein involved in ALS in motor neurons - TDP-43. "When they are adults, around 12 days, their motor neurons break down. Normally, at two weeks of life, 50% of the worms are completely paralyzed.

But among those that received a diet enriched with 4% maple syrup, only 17% were paralyzed. We can therefore conclude that maple syrup protects neurons and prevents the development of amyotrophic lateral sclerosis in C. elegans worms," said Parker, a researcher at the CRCHUM and professor at the Faculty of Medicine, University of Montreal.

How can we explain this dramatic effect? "Sugar is good for the nervous system. Diseased neurons require more energy to combat toxic proteins. But maple syrup is rich in polyphenols, powerful antioxidants found in certain foods.

We isolated phenols contained in the maple syrup, and we showed that two polyphenols in particular, gallic acid and catechol, have a neuroprotective effect. In pure maple syrup, these polyphenols are found in low concentrations. Probably a combination of sugar and polyphenols prevents the occurrence of the disease in worms," said Therrien, a PhD student at the CRCHUM.

But don't go ahead and gorge yourself on maple syrup thinking it'll protect you against neurological diseases! "The life expectancy of C. elegans worms is only three weeks. They are spared the long-term toxic effects of sugar. Humans who consume comparable amounts of sugar risk developing chronic diseases such Type 2 diabetes and obesity," cautioned Parker.

Amyotrophic lateral sclerosis is a rare neuromuscular disease that causes paralysis and death a few years after the onset of symptoms. So far, no cure is available for patients. This latest study on maple syrup and the C. elegans worm was conducted for educational purposes. Other studies by Alex Parker with C. elegans have led to the discovery of promising drugs, which will be tested in patients in a few years.

Catherine Aaron and Gabrielle Beaudry won the Sanofi Biogenius Canada People's Choice Award - Quebec section - for this project in April 2014. Aaron is now a first-year medical student at the University of Montreal, and Beaudry studies psychology at the University of Sherbrooke.



Catherine Aaron, Gabrielle Beaudry, and Alex Parker are available for interviews by appointment from 1-3 pm on April 13, 2016.

About the study

The study "Maple syrup decreases TDP-43 proteotoxicity in a C. elegans model of ALS" was published online in the Journal of Agricultural and Food Chemistry on April 13, 2016 Catherine Aaron and Gabrielle Beaudry are undergraduate students, Alex J. Parker is a researcher at the CRCHUM and professor at the University of Montreal, and Martine Therrien recently completed a PhD at the CRCHUM and the University of Montreal. The study did not receive specific funding. Alex J. Parker is funded by the Fondation du CHUM, ALS Canada, the Canadian Health Research Institutes, le Fonds de recherche du Québec - Santé, and the American Muscular Dystrophy Association.

About the CRCHUM

The University of Montreal Hospital Research Centre (CRCHUM) is one of the largest hospital-based research centres in North America. Our mission is to improve the health of adults through a continuum of research from basic science, to population health, to clinical research. More than 1,950 people work at the CRCHUM, including 439 researchers and 700 students and research trainees:

About the University of Montreal

Deeply rooted in Montreal and dedicated to its international mission, the University of Montreal is one of the top universities in the French-speaking world. Founded in 1878, the University of Montreal today has 16 faculties and schools, and together with its two affiliated schools, HEC Montreal and Polytechnique Montreal, constitutes the largest centre of higher education and research in Quebec and one of the major centres in North America. It brings together 2,500 professors and researchers and welcomes more than 60,000 students.

Source: University of Montreal Hospital Research Centre (CRCHUM)


Isabelle Girard
Information Advisor, CRCHUM
514-890-8000 #12725 | @CRCHUM
514-890-8000 #12725

Isabelle Girard | EurekAlert!

More articles from Life Sciences:

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>