Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Managed bees spread and intensify diseases in wild bees

06.11.2015

UC Riverside-led research shows wild bees are harmed even when managed bees are disease-free

For various reasons, wild pollinators are in decline across many parts of the world. To combat this, managed honey bees and bumblebees are frequently shipped in to provide valuable pollination services to crops. But does this practice pose any risk to the wild bees?


Photo shows a honey bee and a bumblebee foraging on a purple coneflower.

Credit: Kathy Keatley Garvey, UC Davis.

An entomologist at the University of California, Riverside has examined the evidence by analyzing the large body of research done in this area to come to the conclusion that managed bees are spreading diseases to wild bees.

"Even in cases when the managed bees do not have a disease, they still stress local wild bees, making them more susceptible to disease," said Peter Graystock, a postdoctoral researcher in the Department of Entomology and the lead author of a paper published online last week in the International Journal for Parasitology: Parasites and Wildlife.

The work is a review of a vast amount of research in this area, incorporating studies that utilize advanced disease screening. It lists the problems managed bees cause and suggests avenues to limit further damage.

"The use of managed honeybees and bumblebees is linked with several cases of increased disease and population declines in wild bees," Graystock said. "This is shown in various countries around the world and is not always because the managed bees are carrying a disease. Loss of wild pollinators will ultimately either reduce crop yields or increase the reliance on and cost of shipping in more managed bees. This increased cost will cascade down to consumers, raising the price of food we put on our tables."

By studying various examples from across the world, Graystock and his colleagues came up with a list of recommendations to enable the use of managed bees while minimizing their impact on wild bees.

"Primarily, this includes frequently screening for disease in managed bees and the employment of strategies to minimize mixing between managed and wild bees," Graystock said.

He noted that the globalized trade in bees has enabled almost free movement of diseases around the world. The movement of honey bees, he said, is the likely cause of the emergence of two of the most harmful honeybee diseases in countless countries in the last 50 years: Nosema ceranae and the Varroa mite.

"In addition, the more recent trade in bumblebees is responsible for importing exotic mites into Japan and appears to be responsible for importing European strains of Nosema bombi into North America and Crithidia bombi into South America," he said.

The authors of the review paper offer suggestions for mitigating the problem. They recommend first that the safety of bee transport be improved by employing rigorous disease screening of bees and creating unified international regulations to prevent the movement of diseased bees. Second, they advise that the mixing of managed bumblebees with wild bees should be prevented by using nets over glasshouses containing managed bumblebees. Finally, they recommend an increased conservation effort to limit the effects of managed bee use in areas suffering wild bee declines.

"The general perception is that managed bees are healthy and that there will be laws in place to prevent harm to the environment," Graystock said. "The more you look into this though, the more you realize that many countries have inadequate or no laws for bee movements and when we are looking at a global industry, this affects everyone. There is no unified law to prevent diseased bee transportation and most bumblebee restrictions are based on honeybee diseases, with little to no requirement to look for bumblebee diseases."

Graystock has researched the effects of managed bees on wild bees for the past 4-5 years. The review article resulted from an invitation to him from the editor of the International Journal for Parasitology: Parasites and Wildlife.

###

He was joined in the research by Quinn S. McFrederick at UC Riverside; Edward J. Blane at Natural England, Worcester, the United Kingdom; and Dave Goulson and William OH. Hughes at the University of Sussex, the United Kingdom.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Media Contact

Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050

 @UCRiverside

http://www.ucr.edu 

Iqbal Pittalwala | EurekAlert!

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>