Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Managed bees spread and intensify diseases in wild bees

06.11.2015

UC Riverside-led research shows wild bees are harmed even when managed bees are disease-free

For various reasons, wild pollinators are in decline across many parts of the world. To combat this, managed honey bees and bumblebees are frequently shipped in to provide valuable pollination services to crops. But does this practice pose any risk to the wild bees?


Photo shows a honey bee and a bumblebee foraging on a purple coneflower.

Credit: Kathy Keatley Garvey, UC Davis.

An entomologist at the University of California, Riverside has examined the evidence by analyzing the large body of research done in this area to come to the conclusion that managed bees are spreading diseases to wild bees.

"Even in cases when the managed bees do not have a disease, they still stress local wild bees, making them more susceptible to disease," said Peter Graystock, a postdoctoral researcher in the Department of Entomology and the lead author of a paper published online last week in the International Journal for Parasitology: Parasites and Wildlife.

The work is a review of a vast amount of research in this area, incorporating studies that utilize advanced disease screening. It lists the problems managed bees cause and suggests avenues to limit further damage.

"The use of managed honeybees and bumblebees is linked with several cases of increased disease and population declines in wild bees," Graystock said. "This is shown in various countries around the world and is not always because the managed bees are carrying a disease. Loss of wild pollinators will ultimately either reduce crop yields or increase the reliance on and cost of shipping in more managed bees. This increased cost will cascade down to consumers, raising the price of food we put on our tables."

By studying various examples from across the world, Graystock and his colleagues came up with a list of recommendations to enable the use of managed bees while minimizing their impact on wild bees.

"Primarily, this includes frequently screening for disease in managed bees and the employment of strategies to minimize mixing between managed and wild bees," Graystock said.

He noted that the globalized trade in bees has enabled almost free movement of diseases around the world. The movement of honey bees, he said, is the likely cause of the emergence of two of the most harmful honeybee diseases in countless countries in the last 50 years: Nosema ceranae and the Varroa mite.

"In addition, the more recent trade in bumblebees is responsible for importing exotic mites into Japan and appears to be responsible for importing European strains of Nosema bombi into North America and Crithidia bombi into South America," he said.

The authors of the review paper offer suggestions for mitigating the problem. They recommend first that the safety of bee transport be improved by employing rigorous disease screening of bees and creating unified international regulations to prevent the movement of diseased bees. Second, they advise that the mixing of managed bumblebees with wild bees should be prevented by using nets over glasshouses containing managed bumblebees. Finally, they recommend an increased conservation effort to limit the effects of managed bee use in areas suffering wild bee declines.

"The general perception is that managed bees are healthy and that there will be laws in place to prevent harm to the environment," Graystock said. "The more you look into this though, the more you realize that many countries have inadequate or no laws for bee movements and when we are looking at a global industry, this affects everyone. There is no unified law to prevent diseased bee transportation and most bumblebee restrictions are based on honeybee diseases, with little to no requirement to look for bumblebee diseases."

Graystock has researched the effects of managed bees on wild bees for the past 4-5 years. The review article resulted from an invitation to him from the editor of the International Journal for Parasitology: Parasites and Wildlife.

###

He was joined in the research by Quinn S. McFrederick at UC Riverside; Edward J. Blane at Natural England, Worcester, the United Kingdom; and Dave Goulson and William OH. Hughes at the University of Sussex, the United Kingdom.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Media Contact

Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050

 @UCRiverside

http://www.ucr.edu 

Iqbal Pittalwala | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>