Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male or female?

22.09.2015

According to a well-known theory in evolutionary biology healthy females should give birth to more males than females. A study funded by the Swiss National Science Foundation shows why this is not always true.

According to popular belief, whether you have a baby girl or boy is purely a matter of chance. And yet, a study published several years ago shows that mothers in stressful jobs, for instance, give birth to more girls than boys.

The correlation between such shifts in the offspring sex ratio and the mother’s overall state is something that evolutionary biologists are familiar with from other animal species. One influential hypothesis puts natural selection as an explanation for the imbalances observed.

Strong males with high reproductive success

The Trivers-Willard hypothesis states that it is beneficial for mothers to be able to adjust the sex of their offspring in response to their own state of health. Accordingly, a female in good condition should give birth to more male offspring.

This is because successful males have the potential to produce more children in their lifetime than successful females. By producing strong sons, healthy mothers increase the probability of their own genes being widely distributed. Conversely, low-ranking females who are not in such good shape are more likely to produce daughters, because the chances of giving birth to a future dominant male are poor.

“However, it’s not quite as simple as that,” points out biologist Peter Neuhaus sponsored by the Swiss National Science Foundation, based at the University of Calgary in Canada. Taking the example of a model with data from Columbian ground squirrels and Canadian bighorn sheep, Neuhaus – together with colleagues from the UK, the US, France and South Africa – has demonstrated in an article published in Nature magazine that optimal reproduction also depends on a series of other factors.

Dead before reaching sexual maturity

Bighorn ewes, for instance, give birth to only one lamb a year. Most females mate with the dominant ram, which means many of the other males don’t get a chance. Females in a good state often pass on their condition and so can be expected to “to make supermales”, as Neuhaus explains.

Nonetheless, the healthy females do not produce more male than female offspring. As the model demonstrates, other parameters, such as the fact that a large number of males die before reaching sexual maturity, play a central role in assessing reproductive potential.

But what have sheep got to do with mothers in jobs with some degree of stress? Nobody doubts that they have more girls, but Neuhaus advises caution: “Evolution is very complex. To understand how it works, you need to take into account as many factors as possible that could influence reproductive potential.”

(*) S. Schindler, J.-M. Gaillard, A. Grüning, P. Neuhaus, L. W. Traill, S. Tuljapurkar & T. Coulson (2015). Sex-specific demography and generalisation of Trivers-Willard theory. Nature online: doi:10.1038/nature14968

(Available for journalists as a PDF file from the SNSF: com@snf.ch)

Contact persons

Prof. Peter Neuhaus
Department of Biological Sciences
University of Calgary
Calgary, AB, T2N 1N4, Canada
Tel.: +1 403 220 8776
E-mail: pneuhaus@ucalgary.ca
Time difference: -8 hours

Dr. Susanne Schindler
Institut für Evolutionsbiologie und Umweltwissenschaften
Winterthurerstrasse 190
CH-8057 Zurich
Tel.: +41 76 295 36 85
E-mail: susanne.schindler@zoo.ox.ac.uk

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-150921-press-release-ma...
https://sschindlerblog.wordpress.com/2015/09/21/daughter-or-son-which-sex-to-pro... Susanne Schindler’s blog

Medien - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>