Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male or female?

22.09.2015

According to a well-known theory in evolutionary biology healthy females should give birth to more males than females. A study funded by the Swiss National Science Foundation shows why this is not always true.

According to popular belief, whether you have a baby girl or boy is purely a matter of chance. And yet, a study published several years ago shows that mothers in stressful jobs, for instance, give birth to more girls than boys.

The correlation between such shifts in the offspring sex ratio and the mother’s overall state is something that evolutionary biologists are familiar with from other animal species. One influential hypothesis puts natural selection as an explanation for the imbalances observed.

Strong males with high reproductive success

The Trivers-Willard hypothesis states that it is beneficial for mothers to be able to adjust the sex of their offspring in response to their own state of health. Accordingly, a female in good condition should give birth to more male offspring.

This is because successful males have the potential to produce more children in their lifetime than successful females. By producing strong sons, healthy mothers increase the probability of their own genes being widely distributed. Conversely, low-ranking females who are not in such good shape are more likely to produce daughters, because the chances of giving birth to a future dominant male are poor.

“However, it’s not quite as simple as that,” points out biologist Peter Neuhaus sponsored by the Swiss National Science Foundation, based at the University of Calgary in Canada. Taking the example of a model with data from Columbian ground squirrels and Canadian bighorn sheep, Neuhaus – together with colleagues from the UK, the US, France and South Africa – has demonstrated in an article published in Nature magazine that optimal reproduction also depends on a series of other factors.

Dead before reaching sexual maturity

Bighorn ewes, for instance, give birth to only one lamb a year. Most females mate with the dominant ram, which means many of the other males don’t get a chance. Females in a good state often pass on their condition and so can be expected to “to make supermales”, as Neuhaus explains.

Nonetheless, the healthy females do not produce more male than female offspring. As the model demonstrates, other parameters, such as the fact that a large number of males die before reaching sexual maturity, play a central role in assessing reproductive potential.

But what have sheep got to do with mothers in jobs with some degree of stress? Nobody doubts that they have more girls, but Neuhaus advises caution: “Evolution is very complex. To understand how it works, you need to take into account as many factors as possible that could influence reproductive potential.”

(*) S. Schindler, J.-M. Gaillard, A. Grüning, P. Neuhaus, L. W. Traill, S. Tuljapurkar & T. Coulson (2015). Sex-specific demography and generalisation of Trivers-Willard theory. Nature online: doi:10.1038/nature14968

(Available for journalists as a PDF file from the SNSF: com@snf.ch)

Contact persons

Prof. Peter Neuhaus
Department of Biological Sciences
University of Calgary
Calgary, AB, T2N 1N4, Canada
Tel.: +1 403 220 8776
E-mail: pneuhaus@ucalgary.ca
Time difference: -8 hours

Dr. Susanne Schindler
Institut für Evolutionsbiologie und Umweltwissenschaften
Winterthurerstrasse 190
CH-8057 Zurich
Tel.: +41 76 295 36 85
E-mail: susanne.schindler@zoo.ox.ac.uk

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-150921-press-release-ma...
https://sschindlerblog.wordpress.com/2015/09/21/daughter-or-son-which-sex-to-pro... Susanne Schindler’s blog

Medien - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>