Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maize analysis yields whole new world of genetic science

07.11.2014

A groundbreaking paper from a team of Florida State University biologists could lead to a better understanding of how plants could adapt to and survive environmental swings such as droughts or floods.

The research, published in the latest issue of the journal The Plant Cell, sheds light on how chromatin (the complex of DNA and proteins) is organized in a cell and how plants regulate genetic material, so that some genes are turned on and others are turned off.

"If you understand how plants regulate their genetic material, you can possibly manipulate that in certain circumstances so that plants can withstand environmental changes," said Daniel Vera, a Florida State graduate student in the Department of Biological Science and the lead author on the paper.

And that could mean major advances for the agriculture industry.

But the process to get there was a long road of painstakingly difficult research.

When Associate Professor Hank Bass initially conceived the project, he was actually looking to establish a protocol that scientists worldwide could use to map chromatin structures in plants. Though many scientists study plant genetics, they all used multiple ways to examine a cell's DNA-protein complexes.

All cells in an organism typically have the same genetic material, despite the variation in tissues and organs. That is because within those cells, differential gene expression gives rise to different properties of tissues.

So, Bass, Vera, and a team that included post doctoral researcher Thelma Madzima and several other project members set out to find a way for scientists to better research this genetic material in plants. But, as they began their work, they hit a wall.

The research team exposed 12 different samples of a maize genome to an enzyme to cut through the DNA, except where it was protected by proteins -- a method to chart the so-called chromatin landscape.

Despite careful control of the experiment, certain regions of DNA differed wildly from one sample to the next, initially leaving the researchers stumped and looking for answers.

Eventually, the group discovered that these variable regions were hypersensitive to the enzyme.

"It was almost like baking a cake," Bass said. "It's never the same if you bake it 32 different times. Three hundred-fifty degrees is not the same in every household."

Once they discovered the root of the problem, researchers were able to control the enzyme reaction and show that these same regions were likely sites of genetic regulation.

In doing so, they found biochemical signatures in the DNA that scientists hadn't previously examined. Bass compared it to putting on infrared goggles in a dark forest to suddenly see all the warm-blooded animals.

"We have found new ways to see really important parts of the chromatin," Bass said. "People just missed it before."

Added Madzima: "We would have totally missed this if we'd used previously used methods to map out maize chromatin."

Though the research was conducted on maize tissues, the results and protocol established through the research are translatable to other plants and mammals.

This research was funded by a $1.5 million National Science Foundation grant through the Plant Genome Research Program and combined resources of three Florida State laboratories and one Florida A&M University lab.

Other researchers from the Department of Biological Science on the project include Assistant Professors Jonathan Dennis and Karen McGinnis, post doctoral researchers Jonathan Labonne and Parwez Alam, project manager Gregg Hoffman. Associate Professor of Statistics Jinfeng Zhang, and his graduate student S.B. Girimurugan also contributed.

Kathleen Haughney | EurekAlert!
Further information:
http://www.fsu.edu/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>