Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maize analysis yields whole new world of genetic science

07.11.2014

A groundbreaking paper from a team of Florida State University biologists could lead to a better understanding of how plants could adapt to and survive environmental swings such as droughts or floods.

The research, published in the latest issue of the journal The Plant Cell, sheds light on how chromatin (the complex of DNA and proteins) is organized in a cell and how plants regulate genetic material, so that some genes are turned on and others are turned off.

"If you understand how plants regulate their genetic material, you can possibly manipulate that in certain circumstances so that plants can withstand environmental changes," said Daniel Vera, a Florida State graduate student in the Department of Biological Science and the lead author on the paper.

And that could mean major advances for the agriculture industry.

But the process to get there was a long road of painstakingly difficult research.

When Associate Professor Hank Bass initially conceived the project, he was actually looking to establish a protocol that scientists worldwide could use to map chromatin structures in plants. Though many scientists study plant genetics, they all used multiple ways to examine a cell's DNA-protein complexes.

All cells in an organism typically have the same genetic material, despite the variation in tissues and organs. That is because within those cells, differential gene expression gives rise to different properties of tissues.

So, Bass, Vera, and a team that included post doctoral researcher Thelma Madzima and several other project members set out to find a way for scientists to better research this genetic material in plants. But, as they began their work, they hit a wall.

The research team exposed 12 different samples of a maize genome to an enzyme to cut through the DNA, except where it was protected by proteins -- a method to chart the so-called chromatin landscape.

Despite careful control of the experiment, certain regions of DNA differed wildly from one sample to the next, initially leaving the researchers stumped and looking for answers.

Eventually, the group discovered that these variable regions were hypersensitive to the enzyme.

"It was almost like baking a cake," Bass said. "It's never the same if you bake it 32 different times. Three hundred-fifty degrees is not the same in every household."

Once they discovered the root of the problem, researchers were able to control the enzyme reaction and show that these same regions were likely sites of genetic regulation.

In doing so, they found biochemical signatures in the DNA that scientists hadn't previously examined. Bass compared it to putting on infrared goggles in a dark forest to suddenly see all the warm-blooded animals.

"We have found new ways to see really important parts of the chromatin," Bass said. "People just missed it before."

Added Madzima: "We would have totally missed this if we'd used previously used methods to map out maize chromatin."

Though the research was conducted on maize tissues, the results and protocol established through the research are translatable to other plants and mammals.

This research was funded by a $1.5 million National Science Foundation grant through the Plant Genome Research Program and combined resources of three Florida State laboratories and one Florida A&M University lab.

Other researchers from the Department of Biological Science on the project include Assistant Professors Jonathan Dennis and Karen McGinnis, post doctoral researchers Jonathan Labonne and Parwez Alam, project manager Gregg Hoffman. Associate Professor of Statistics Jinfeng Zhang, and his graduate student S.B. Girimurugan also contributed.

Kathleen Haughney | EurekAlert!
Further information:
http://www.fsu.edu/

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>