Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning translates 'hidden' information to reveal chemistry in action

11.10.2017

New method allows on-the-fly analysis of how catalysts change during reactions, providing crucial information for improving performance

Chemistry is a complex dance of atoms. Subtle shifts in position and shuffles of electrons break and remake chemical bonds as participants change partners. Catalysts are like molecular matchmakers that make it easier for sometimes-reluctant partners to interact.


A sketch of the new method that enables fast, 'on-the-fly' determination of three-dimensional structure of nanocatalysts. The neural network converts the x-ray absorption spectra into geometric information (such as nanoparticle sizes and shapes) and the structural models are obtained for each spectrum.

Credit: Brookhaven National Laboratory

Now scientists have a way to capture the details of chemistry choreography as it happens. The method--which relies on computers that have learned to recognize hidden signs of the steps--should help them improve the performance of catalysts to drive reactions toward desired products faster.

The method--developed by an interdisciplinary team of chemists, computational scientists, and physicists at the U.S. Department of Energy's Brookhaven National Laboratory and Stony Brook University--is described in a new paper published in the Journal of Physical Chemistry Letters. The paper demonstrates how the team used neural networks and machine learning to teach computers to decode previously inaccessible information from x-ray data, and then used that data to decipher 3D nanoscale structures.

Decoding nanoscale structures

"The main challenge in developing catalysts is knowing how they work--so we can design better ones rationally, not by trial-and-error," said Anatoly Frenkel, leader of the research team who has a joint appointment with Brookhaven Lab's Chemistry Division and Stony Brook University's Materials Science Department. "The explanation for how catalysts work is at the level of atoms and very precise measurements of distances between them, which can change as they react. Therefore it is not so important to know the catalysts' architecture when they are made but more important to follow that as they react."

Trouble is, important reactions--those that create important industrial chemicals such as fertilizers--often take place at high temperatures and under pressure, which complicates measurement techniques. For example, x-rays can reveal some atomic-level structures by causing atoms that absorb their energy to emit electronic waves. As those waves interact with nearby atoms, they reveal their positions in a way that's similar to how distortions in ripples on the surface of a pond can reveal the presence of rocks. But the ripple pattern gets more complicated and smeared when high heat and pressure introduce disorder into the structure, thus blurring the information the waves can reveal.

So instead of relying on the "ripple pattern" of the x-ray absorption spectrum, Frenkel's group figured out a way to look into a different part of the spectrum associated with low-energy waves that are less affected by heat and disorder.

"We realized that this part of the x-ray absorption signal contains all the needed information about the environment around the absorbing atoms," said Janis Timoshenko, a postdoctoral fellow working with Frenkel at Stony Brook and lead author on the paper. "But this information is hidden 'below the surface' in the sense that we don't have an equation to describe it, so it is much harder to interpret. We needed to decode that spectrum but we didn't have a key."

Fortunately Yuewei Lin and Shinjae Yoo of Brookhaven's Computational Science Initiative and Deyu Lu of the Center for Functional Nanomaterials (CFN) had significant experience with so-called machine learning methods. They helped the team develop a key by teaching computers to find the connections between hidden features of the absorption spectrum and structural details of the catalysts.

"Janis took these ideas and really ran with them," Frenkel said.

The team used theoretical modeling to produce simulated spectra of several hundred thousand model structures, and used those to train the computer to recognize the features of the spectrum and how they correlated with the structure.

"Then we built a neural network that was able to convert the spectrum into structures," Frenkel said.

When they tested to see if the method would work to decipher the shapes and sizes of well-defined platinum nanoparticles (using x-ray absorption spectra previously published by Frenkel and his collaborators) it did.

"This method can now be used on the fly," Frenkel said. "Once the network is constructed it takes almost no time for the structure to be obtained in any real experiment."

That means scientists studying catalysts at Brookhaven's National Synchrotron Light Source II (NSLS-II), for example, could obtain real-time structural information to decipher why a particular reaction slows down, or starts producing an unwanted product--and then tweak the reaction conditions or catalyst chemistry to achieve desired results. This would be a big improvement over waiting to analyze results after completing the experiments and then figuring out what went wrong.

In addition, this technique can process and analyze spectral signals from very low-concentration samples, and will be particularly useful at new high flux and high-energy-resolution beamlines incorporating special optics and high-throughput analysis techniques at NSLS-II.

"This will offer completely new methods of using synchrotrons for operando research," Frenkel said.

###

This work was funded by the DOE Office of Science (BES) and by Brookhaven's Laboratory Directed Research and Development program. Previously published spectra for the model nanoparticles used to validate the neural network were collected at the Advanced Photon Source (APS) at DOE's Argonne National Laboratory and the original National Synchrotron Light Source (NSLS) at Brookhaven Lab, now replaced by NSLS-II. CFN, NSLS-II, and APS are DOE Office of Science User Facilities. In addition to Frenkel and Timoshenko, Lu and Lin are co-authors on the paper.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: "Supervised Machine Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles"

Follow @brookhavenlab on Twitter and Facebook

An electronic version of this news release with related graphics

Media contacts: Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174

Brookhaven National Laboratory http://www.bnl.gov
Media & Communications Office Phone: (631)344-8350
Bldg. 400 - P.O. Box 5000 Fax: (631)344-3368
Upton, NY 11973

Media Contact

Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350

 @brookhavenlab

http://www.bnl.gov 

Karen McNulty Walsh | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>