Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning technique helps identify cancer cell types

12.10.2016

National Institutes of Health, COBRE Center for Cancer Research Development at Rhode Island Hospital, Rhode Island Foundation Medical Research Grant, Jason and Donna McGraw Weiss

Brown University researchers have developed a new image analysis technique to distinguish two key cancer cell types associated with tumor progression. The approach could help in pre-clinical screening of cancer drugs and shed light on a cellular metamorphosis that is associated with more malignant and drug-resistant cancers.


Brown researchers have trained a computer algorithm to spot in laboratory samples a cellular transition associated with more aggressive cancers.

Credit: Wong Lab / Brown University

The epithelial-mesenchymal transition, or EMT, is a process by which more docile epithelial cells transform into more aggressive mesenchymal cells. Tumors with higher numbers of mesenchymal cells are often more malignant and more resistant to drug therapies. The new technique combines microscopic imaging with a machine learning algorithm to better identify and distinguish between the two cell types in laboratory samples.

"We know that there are these different cell types interacting within tumors and that therapeutics can target these cells differently," said Susan Leggett, a doctoral student in Brown's pathobiology graduate program and lead author of a paper describing the technique. "We've developed a model that can pick out these cell types automatically and in an unbiased way. We think this could help us better understand how these different cell types respond to drug treatment."

The technique is described in an article published in Integrative Biology.

Generally speaking, the two cell types can be distinguishable by their shapes. Epithelial cells are more compact in appearance, while mesenchymal cells appear more elongated and spindly, both in their overall appearance and in the appearance of their nuclei.

"It's not hard to distinguish the two in the most extreme instances," said Ian Y. Wong, assistant professor of engineering at Brown and the senior author of the research. "But sometimes the shape differences are subtle and it can be hard for humans to recognize the difference, which makes categorizing the two a bit arbitrary. The innovation here is that we can train a computer to pick out those more subtle variations."

That training was done by using an epithelial cell line, cultured in a petri dish, that serves as a model for human breast cancer. The researchers activated a transcription factor called Snail that is well known to cause these cells to quickly undergo an extreme form of EMT. Those cells, imaged before and after the transition, served as a training set to teach the algorithm to distinguish between the two cell types.

The researchers showed that, after training, the algorithm was able to categorize individual cells as either epithelial or mesenchymal with greater than 92 percent accuracy.

The team then used the algorithm to analyze sets of cells that undergo EMT triggered by pathways less well studied than that used in the training set. They treated epithelial cells with a compound called TGF-beta1, which promotes rapid cell growth and is also thought to induce EMT. They showed that the growth factor induced EMT more slowly than in the training set, and produced changes in cell shape that were subtler. Still, the algorithm was able to classify the cells after EMT with a high degree of confidence.

In a third experiment, the researchers looked at epithelial cells treated with the chemotherapy drug Taxol. Recent research has suggested that Taxol and other drugs, when delivered in sub-lethal doses, could induce EMT in the cells they fail to kill. In that way, the drugs may actually prime the tumors to become more drug resistant.

The experiment found that while sub-lethal Taxol created a range of cell shapes, more than 70 percent of those could be classified by the algorithm as mesenchymal.

It's a preliminary finding that will require much more study to fully understand, Wong says. But it could shed light on how tumors become resistant to Taxol and other drugs.

"The acquisition of drug resistance and subsequent tumor relapse remains poorly understood," Wong says. "This work suggests that EMT could be a mechanism through which tumors become more resistant."

With more development, the researchers think their technique could provide a new means to screen the effectiveness of cancer drugs.

"When we do initial lab testing of drugs, we put cells on a plate, apply the drug and see what lives and what dies," Wong said. "This could provide us with a more nuanced picture of the drug's effects, and help us to see whether sub-lethal doses may prime cells for resistance."

Wong says that another intriguing result from the study was that while the algorithm categorized most cells with high confidence, about 10 percent of cells in each of the experimental groups seemed to defy categorization. It's possible, the researchers say, that this indicates an intermediate cell type that is somewhere between epithelial and mesenchymal.

"People have wondered if there might be more than two cell types of interest," Wong said. "We can't say for sure at this point, but we might be picking up a third type. That's something we'll be looking at in future work."

###

Legget and Wong's coauthors on the study were Jea Yun Sim, Jonathan Rubins, Zachary Neronha and Evelyn Kendall Williams, all from Brown. The research was supported by the National Institutes of Health (5T32ES007272-24), the COBRE Center for Cancer Research Development at Rhode Island Hospital (1P30GM110759-01A1), a Rhode Island Foundation Medical Research Grant, Jason and Donna McGraw Weiss and Brown University.

Kevin Stacey | EurekAlert!

Further reports about: EMT Taxol drugs epithelial epithelial cells mesenchymal mesenchymal cells tumors

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>