Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Luminous heart cells: Jellyfish proteins assist in heart rhythm disorder research

02.09.2016

Cell models from stem cells serve an ever-increasing role in research of cardiac dysfunction. Researchers at the Technical University of Munich (TUM) have succeeded in producing cells which offer new insights into properties of the heart. They installed a molecular sensor into the cells which emits light, and not only makes the cells' electrical activity visible, but also makes it possible for the first time to quickly identify cell types.

It has been possible to produce so-called induced pluripotent stem cells in the laboratory for the past ten years. These stem cells are derived from white blood cells, for example, and can be infinitely reproduced in the laboratory, and be turned into all possible types of cells.


A molecular sensor makes the electrical activity of heart cells visible. (photo: Alessandra Moretti / TUM)

This has enabled the use of heart cells produced in this way in order to investigate cardiac rhythm dysfunctions, for example. Animal experiments are only of limited use for this application, and tissue samples cannot be easily taken from patients' hearts. Cultivated heart cells, however, provide the opportunity to research such diseases in a 'miniature' format.

"Our development solves several problems which had made working with such cell models difficult," said t Dr. Daniel Sinnecker, Cardiologist at TUM's Klinikum rechts der Isar. Laboratory-produced heart cells still pose the problem of how one can best measure electrical activity. In the past, microelectrodes were most commonly used in order to directly determine the cells’ electrical signals. This procedure, however, is quite tedious, and can only be used on a small number of cells.

... more about:
»heart cells »heart rhythm »proteins

Differences between cell types

In addition, not all heart cells are alike. All heart cells are able to contract at their own cyclic rhythm, and to forward electrical signals to neighbouring cells. Yet, the cells which form the various structures of the heart, such as the atria, the chambers or the sinus node, i.e. the ‘pacemaker’ of the heart, differ significantly from each other, for example in their action potentials. These are variations in electrical voltage between the inside and outside of cells which form an electric signal that controls the excitation process in the heart and thus its contractions.

This difference becomes relevant when examining rhythm disorders which are caused by malfunctions in specific areas of the heart muscle. Producing heart cells from stem cells, scientists today have only insufficient ways of influencing whether those cells become heart chamber cells, atrial cells or nodal cells. In order to investigate a particular disorder, scientists must meticulously identify the type of each individual cell.

Biological sensors instead of microelectrodes

Daniel Sinnecker and his team described a possible solution for both of these problems in their article in the "European Heart Journal." Instead of relying on microelectrodes, the scientists used biological sensors. These are built from fluorescent, i.e.luminous, protein from deep sea jellyfish. The DNA which contains the "construction plans" for these sensor proteins is inserted into heart cells, which then produce the sensor proteins. When the altered heart cells are stimulated with light at a specific wavelength, they produce light at a different wavelength. The precise color of the returned light depends on the voltage difference between the cells' interiors and exteriors. One can therefore measure and record the action potential of individual cells using a special camera.

A special characteristic of this new method is that the inserted DNA can be coupled with specific recognition sequences, so-called promoters. These ensure that the sensor proteins are produced only in specific types of heart muscle cells. Thus, it becomes possible to capture only the electrical signals from atrial cells, heart chamber cells or sinus node cells, as needed.

New possibilities for investigating drugs

In contrast to the prior cumbersome microelectrode technique, this method offers significantly improved performance. "We can already investigate hundreds of cells in one day instead of only a handful," says Zhfen Chen, first author of the study. "This process can basically be automated and scaled up, so that thousands of cells can be investigated at the same time."

"In the future, we can use our method not only in the laboratory in order to study disease," says Daniel Sinnecker. "The fact that we can investigate large numbers of cells means that we can also use this method for investigation of drugs, in which, for example, we can investigate whether a product has a negative effect on heart muscle." A challenge for such new types of procedures is that the cells must be produced in the needed quantities. Daniel Sinnecker and his team are working on increasing the sensitivity of their method.

Original publication

Z. Chen, W. Xian, M. Bellin, T. Dorn, Q. Tian, A. Goedel, L. Dreizehnter, C. M. Schneider, D. Ward-van Oostwaard, J. King Man Ng, R. Hinkel, L. S. Pane, C. L. Mummery, P. Lipp, A. Moretti, K.-L. Laugwitz, D. Sinnecker. "Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes". Eur Heart J (2016). DOI: http://dx.doi.org/10.1093/eurheartj/ehw189

Contact

Paul Hellmich
Corporate Communications Center
Technical University of Munich (TUM)
Tel.: +49 (89) 289-22731
Email: paul.hellmich@tum.de

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

Further reports about: heart cells heart rhythm proteins

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>