Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Love at first smell: Can birds choose mates by their odors?

28.11.2014

Mate choice is often the most important decision in the lives of humans and animals. Scientists at the Konrad Lorenz Institute of Ethology at the Vetmeduni Vienna have found the first evidence that birds may choose their mate through odor.

The researchers compared the preen gland chemicals of black-legged kittiwakes with genes that play a role in immunity. Kittiwakes that smell similarly to each other also have similar genes for immunity. Since the birds prefer to mate with unrelated mates, the scientists have now found the likely mechanism by which they recognize relatedness. The scientists published their findings in Nature’s Scientific Reports.


Kittiwakes choose their partners wisely. The smell seems to play an important role.

Photo: Joel White

It has long been understood that reproducing with close relatives may have profoundly negative effects on offspring. It is therefore not surprising that biologists have discovered in some species that breeding individuals have evolved ways to detect their genetic similarity with those of prospective partners. Over 20 years ago it was discovered that female mice were able to choose unrelated over related males as mates.

Females achieved this by comparing the smell of the urine of each male and comparing it with their own odors. Amazingly, the urine odors reflected the genetic composition of each mouse. More specifically, the odors were correlated with a special group of genes called the “major histocompatiabilty complex”, or MHC, which helps individuals resist diseases. Thus, by pairing with MHC-dissimilar mates, breeders produce offspring with a more diverse collection of disease-resistant genes.

This discovery in mice was followed by similar findings in other mammals. More recently it has been shown that birds in several species also avoid breeding with MHC-similar mates. This poses a mystery. Whereas smell is a very well developed sense in mammals, it has long been thought that birds lack such keen olfactory abilities.

Although a growing body of research is showing that birds can discriminate odors more than previously thought, none had shown that birds can do as mammals and use odor to compare their MHC composition with that of prospective mates. This mystery appears to have been solved by a group of researchers from Austria and France.

Team leader Richard H. Wagner and behavioral geneticist Wouter van Dongen of the Konrad Lorenz Institute of Ethology, a part of the Veterinary Medicine University Vienna, have been collabortating with French colleagues on a long-term study of a cliff-nesting gull, the black-legged kittiwake, breeding in Anchorage Bay, Alaska.

When birds groom themselves with their bills, they spread chemical compounds from their preen glands throughout their plumage. These chemicals produce odors that appear to be unique to each individual, providing an olfactory fingerprint. The team suspected that, just as in mammals, these odors may be used by kittiwakes to assess their relatedness to other individuals.

To test this idea, the researchers collected both DNA samples and preen gland odor samples from nesting kittiwakes. The project then entailed two kinds of laboratory work: while Sarah Leclaire at the University of Toulouse conducted the analyses of the preen gland chemicals to characterise the odor signatures of each individual, van Dongen analyzed the MHC of the kittiwakes in the Vienna lab.

The team had previously discovered that kittiwakes avoided pairing with relatives, but the mechanism by which the birds recognized their relatedness to each other had remained unknown until now. Their new finding is that individual kittiwakes that smell similarly to each other (i.e. have similar preen gland chemicals) also have similar MHC genes. Closer relatives therefore have more similar odors than distantly related individuals.

This suggests that birds may be able to compare their own odor with those of potential mates, and to choose unrelated individuals as breeding partners. Quips ornithologist Wagner, “the more research that is performed on smell, the more it appears that anything mammals can do, birds can do too.” The new findings, moreover, open the door for further work linking mate choice and disease-resistance in birds.

The Nature Publishing Group has just published the paper “Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird” by Sarah Leclaire, Wouter F. D. van Dongen, Steeve Voccia, Thomas Merkling, Christine Ducamp, Scott A. Hatch, Pierrick Blanchard, Étienne Danchin & Richard H. Wagner in its online journal Scientific Reports. doi:10.1038/srep06920 http://www.nature.com/srep/2014/141105/srep06920/full/srep06920.html

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at 

Scientific Contact:
Richard Wagner
Konrad Lorenz Institute of Ethology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-7331
richard.wagner@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at


Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/love-at-first-smell-can-birds-choose-mates-by-their-odors/

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Veterinary Veterinary Medicine chemicals genes kittiwakes

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>