Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost the beat: Mice suffer from a decrease in biological fitness if their internal clock is mixed up

30.12.2015

Mice with deviant internal rhythms due to a genetic mutation have fewer offspring and shorter life spans than normal conspecifics whose rhythms follow the 24-hr cycle of a day more accurately. This discovery was made by a team of scientists led by researchers from the Max Planck Institute for Ornithology and Princeton University. Internal clocks that generate daily rhythms in living beings are among the most important achievements on earth. They are essential for coordinating processes of life with the environment. The study on mice shows that a deviation of internal rhythms from the 24-hr rotation of the earth has a direct influence on biological fitness.

Almost all living things possess internal clocks that govern periods of sleep and waking, and ensure that these processes are in synchrony with night and day. This circadian clock evolved to allow the anticipation of regular daily events.


Outdoor enclosure

Kamiel Spoelstra


For more than a year scientists investigated the development of six groups of mice in an outdoor enclosure

Kamiel Spoelstra

Sunlight aligns the internal clock with the 24-hour-rhythm of the rotation of the earth. A fundamental, unanswered question so far has been: is the functioning of the internal clock important for how long an organism lives and how well it is able to reproduce in its natural environment?

Mutations in certain genes can disrupt the internal clock so that it runs out of sync with the day-night cycle. In mice, a mutation called tau is known to alter daily rhythms: mice carrying this mutation run through their day about two hours faster than normal mice.

Scientists from the Max Planck Institute for Ornithology in Seewiesen and Radolfzell together with colleagues from the University of Groningen, the University of Manchester and Princeton University studied the biological fitness of such mice with deviant circadian rhythms in a large outdoor enclosure for over a year, where they were exposed to natural predators.

At the beginning of the study the researchers divided 238 mice into six groups. For each group they housed an identical mix of mice without the mutation together with mice carrying either one or two copies of the mutation in their genes. Each mouse was equipped with a transponder, so that the scientists could monitor their activity rhythms at feeders. Mice with one or two copies of the mutation showed aberrant daily rhythms.

Mice without the mutation were observed to live longer and to produce more offspring than mice with the mutation that showed abnormal rhythms. As a consequence, after more than one year the prevalence of the mutation in the population dropped from an initial 50 percent in the starting population to only about 20 percent in the last cohort that was studied.

This finding led the researchers to conclude that strong selection pressures must exist against the tau mutation in a natural environment. “Our findings highlight the fundamental importance of circadian clocks for the biological fitness of living beings. This has never been shown that clearly”, summarizes senior author Michaela Hau. (SL/HR)

Contacts:
Prof. Dr. Michaela Hau
Max-Planck-Institut für Ornithologie
Abteilung Evolutionäre Physiologie
Tel. +49 (0) 8157 932-273
E-Mail: mhau@orn.mpg.de

Dr. Kamiel Spoelstra
Netherlands Institute for Ecology, Wageningen
Department of Animal Ecology
Phone +31 (0)317 473 453
E-Mail: K.Spoelstra@nioo.knaw.nl

Weitere Informationen:

http://www.pnas.org/content/early/2015/12/28/1516442113.full.pdf
http://www.mpg.de/9814892/internal-clock-fitness?filter_order=L&research_top...=

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Further information:
http://www.mpg.de/9814892/internal-clock-fitness?filter_order=L&research_topic

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>