Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looping the Genome: how Cohesin does the Trick

20.04.2017

DNA molecules in the cells‘ nuclei are neatly folded into loops. This serves to wrap them up tightly, but also to bring distant gene regulatory sequences into close contact. In a paper published this week by NATURE, scientists at the Research Institute of Molecular Pathology (IMP) in Vienna describe how cohesin might do the trick.

Twenty years ago, the protein complex cohesin was first described by researchers at the IMP. They found that its shape strikingly corresponds to its function: when a cell divides, the ring-shaped structure of cohesin keeps sister-chromatids tied together until they are ready to separate.


Schematic illustration of the loop-extrusion mechanism (Copyright: IMP)

Apart from this important role during cell-divison, other crucial functions of cohesin have been discovered since - at the IMP and elsewhere. One of them is to help fold the DNA, which amounts to about two meters per nucleus, into a compact size by way of creating loops. “We think that the cohesin-ring clamps onto the DNA-strand to hold the loops in place”, says IMP-director Jan-Michael Peters whose team worked on the project.

The chromatin-loops are not folded at random. Their exact shape and position play an important role in gene regulation, as they bring otherwise distant areas into close contact. “For a long time, scientists were mystified by how regulatory elements – the enhancers – are able to activate distant genes. Now we think we know the trick: precisely folded loops allow enhancers to come very close to the genes they need to regulate”, says Peters. Research results point to cohesin as mediator of this process. Jan-Michael Peters and his team have already shown that the cohesin complex accumulates in areas where loops are formed.

Several scientists recently proposed a so-called “loop-extrusion mechanism” for the folding of chromatin. According to this hypothesis, cohesin is loaded onto DNA at a random site. The DNA strain is then fed through the ring-shaped complex until it encounters a molecular barrier. This element, a DNA-binding protein named CTCF, acts much like a knot tied in a rope and stops the extrusion-process at the correct position. Defined genome-sequences that were previously located far apart are now next to each other and can interact to regulate gene expression.

In NATURE online this week, IMP-researchers publish data that support the existence of such a mechanism. First author Georg Busslinger, a PhD-student in Jan-Michael Peters’ team, showed in mouse cells that cohesin is indeed translocated on DNA over long distances and that the movement depends on transcription, suggesting that this may serve as a ‘motor’.

“The loop extrusion hypothesis has opened up a whole new research area in cell biology and we will probably see many more papers published on this topic in the future”, comments Jan-Michael Peters. Understanding cohesin-function is also relevant from a medical perspective since a number of disorders, including certain cancers, are associated with malfunctions of the protein-complex.

Original Publication
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N und Peters J-M: Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature Advance Online Publication, 19 April 2017, http://rdcu.be/rsMu.

A News-Feature on the topic was published by NATURE simultaneously: http://www.nature.com/news/dna-s-secret-weapon-against-knots-and-tangles-1.21838

Illustration
An illustration can be downloaded and used free of charge in connection with this press release: https://www.imp.ac.at/news-media/downloads/
Caption: Schematic illustration of the loop-extrusion mechanism (Copyright: IMP)

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact
Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Weitere Informationen:

https://www.imp.ac.at/news/detail/article/looping-the-genome-how-cohesin-does-th...

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: CTCF DNA Genome IMP Molecular Molekulare Pathologie biological phenomena cohesin protein complex

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>