Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location matters in the lowland Amazon

26.05.2015

You know the old saying: Location, location, location? It turns out that it applies to the Amazon rainforest, too. New work from Carnegie's Greg Asner illustrates a hidden tapestry of chemical variation across the lowland Peruvian Amazon, with plants in different areas producing an array of chemicals that changes across the region's topography. His team's work is published by Nature Geoscience.

"Our findings tell us that lowland Amazon forests are far more geographically sorted than we once thought," Asner explained. "It is not simply a swath of green that occurs with everything strewn randomly. Place does matter, even if it all appears to be flat and green monotony at first glance."


Although lowland Amazon forests look monotonously green from satellites, Carnegie scientists have discovered that they are actually arranged in chemically-distinct communities patterned by the soils and microtopography that underlie the forest. This Carnegie Airborne Observatory (CAO) image reveals floodplain forest canopies in red that are naturally packed with growth chemicals, as compared to forest canopies on neighboring terraces in yellow-green that are outfitted with fewer growth chemicals. These CAO maps explain the geographic pattern of carbon dioxide uptake in the lowland Amazon, and help to predict forest responses to climate change. Image is courtesy of Greg Asner.

Credit: Greg Asner

The Amazonian forest occupies more than five million square kilometers, stretching from the Atlantic coast to the foothills of the Andes. Thousands of tree and other plant species are found throughout this area, each synthesizing a complex portfolio of chemicals to accomplish a variety of functions from capturing sunlight to fighting off herbivores, to attracting pollinators, not to mention the chemical processes involved in adapting to climate change.

The lowland forests of the Amazon rest on a hidden, underlying mosaic of geologic and hydrologic variation. It turns out that this mosaic affects the diversity of chemical functions that forest plants undertake, because the varying topography affects water, nutrients, and other plant resources. Understanding how the chemical activity of plants varies geographically is crucial to understanding the way an ecosystem functions on a large scale.

To figure it out, Asner and his team took a high-tech approach based on data collected from their Carnegie Airborne Observatory, or CAO, and developed the first high-resolution maps of the forest's canopy chemistry. A novel combination of instruments onboard the CAO, including a high-fidelity imaging spectrometer and a laser scanner, was used to map four huge forested landscapes along two Amazonian river systems. The instruments enabled the team to capture previously hidden chemical fingerprints of rainforest canopy species.

"This is the first time that so many chemicals have been measured and mapped in any forest ecosystem on Earth," Asner said. "No one has done the mapping we have achieved here, which enabled a discovery that the lowland Amazon is anything but monotonous or similar everywhere."

Their results reveal that the pattern of chemical properties in canopy trees changes along the paths of the two rivers--the Madre de Dios River and the Tambopata River--as well as across the landscape's topography on a 'microscale', with very small changes in elevation making all the difference to the plants living there. CAO's laser-guided spectroscopic mapping is unsurpassed in its ability to connect biological and geological processes. Studies of this kind help scientists to better understand the Earth's tremendous diversity and its geographic patterning, both of which are required to understand evolution or the future of species in a changing world.

"Looking at the lowland Amazon with this kind of detail, you can see back in time, from the way the topography was shaped millions of years ago, which still affects soils and mineral availability today, to the way that different species evolved to take advantage of this great variety of subtly changing conditions," Asner explained. "And we can peer into the future and see how quickly human activity is changing the kaleidoscope of diversity that has been uniquely shaped over millions of years."

###

This study was funded by the John D. and Catherine T. MacArthur Foundation.

The Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, Margaret A. Cargill Foundation, John D. and Catherine T. MacArthur Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W.M. Keck Foundation, M.A.N. Baker and G.L.Baker Jr., and W.R. Hearst III.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Greg Asner
gpa@carnegiescience.edu
650-380-2828

 @carnegiescience

http://www.ciw.edu 

Greg Asner | EurekAlert!

Further reports about: Amazon CAO Earth Ecosystem Foundation Observatory activity canopy chemicals processes species topography

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>