Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizard activity levels can help scientists predict environmental change

01.04.2015

Research study provides new tools to assess warming temperatures

Spring is here and ectotherms, or animals dependent on external sources to raise their body temperature, are becoming more active. Recent studies have shown that as the average global temperature increases, some lizards may spend more time in the shade and less time eating and reproducing, which could endanger many species. Now, a detailed field study of the Puerto Rican crested anole by a University of Missouri researcher shows that lizards are active over a broader range of temperatures than scientists previously thought--but when temperatures are either too hot or too cold, critical activity levels slow, limiting the abilities of species to cope with climate variability.


A new Mizzou study reveals the crested anole is active over a broader range of temperatures than scientists had previously observed.

Credit: Manuel Leal

Like other cold-blooded animals, lizards have preferred body temperatures at which they hunt, eat, move quickly and reproduce. The active range for Puerto Rican crested anole is between 81 and 84 degrees Fahrenheit (27-29 degrees Celsius). Scientists previously projected that the lizards would no longer be active at hotter or cooler temperatures. The MU study shows a different perspective.

"We found that lizards were most active between the temperatures previously reported; however, above and below that range, lizards were still active," said Manuel Leal, associate professor of biological sciences in the College of Arts and Science at MU. "Although climate change is still a major problem for lizards, our research indicates that their activity levels are less constrained by temperature than previously thought."

In the study, Leal and Alex Gunderson, a postdoctoral fellow at the University of California-Berkeley, conducted behavioral observations and collected temperature data on hundreds of crested anoles in their native tropical habitat in Puerto Rico. They recorded the lizards' movements and behaviors over 15-minute intervals and measured the lizards' body temperatures.

"The findings suggest that scientists need to rethink how to model the activity of ectotherms and how temperature rise due to climate change may affect behavior," Leal said. "Instead of treating activity as an on- or off-switch, we need to start thinking about activity as more of a dimmer switch, where behaviors are being dialed up and dialed down."

The new modeling techniques presented in the study should provide scientists with the tools they need to create more targeted ways of determining the effects of climate variability on lizards' activities, such as eating and reproducing, Leal said.

###

The study, "Patterns of Thermal Constraint on Ectotherm Activity," appears in the March 11 online issue of the journal American Naturalist.

Editor's Note: For more on the story, please see: http://biology.missouri.edu/news/warming-temperatures-slow-but-dont-stop-lizards/

Media Contact

Jeff Sossamon
sossamonj@missouri.edu
573-882-3346

 @mizzounews

http://www.missouri.edu 

Jeff Sossamon | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>