Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizard activity levels can help scientists predict environmental change

01.04.2015

Research study provides new tools to assess warming temperatures

Spring is here and ectotherms, or animals dependent on external sources to raise their body temperature, are becoming more active. Recent studies have shown that as the average global temperature increases, some lizards may spend more time in the shade and less time eating and reproducing, which could endanger many species. Now, a detailed field study of the Puerto Rican crested anole by a University of Missouri researcher shows that lizards are active over a broader range of temperatures than scientists previously thought--but when temperatures are either too hot or too cold, critical activity levels slow, limiting the abilities of species to cope with climate variability.


A new Mizzou study reveals the crested anole is active over a broader range of temperatures than scientists had previously observed.

Credit: Manuel Leal

Like other cold-blooded animals, lizards have preferred body temperatures at which they hunt, eat, move quickly and reproduce. The active range for Puerto Rican crested anole is between 81 and 84 degrees Fahrenheit (27-29 degrees Celsius). Scientists previously projected that the lizards would no longer be active at hotter or cooler temperatures. The MU study shows a different perspective.

"We found that lizards were most active between the temperatures previously reported; however, above and below that range, lizards were still active," said Manuel Leal, associate professor of biological sciences in the College of Arts and Science at MU. "Although climate change is still a major problem for lizards, our research indicates that their activity levels are less constrained by temperature than previously thought."

In the study, Leal and Alex Gunderson, a postdoctoral fellow at the University of California-Berkeley, conducted behavioral observations and collected temperature data on hundreds of crested anoles in their native tropical habitat in Puerto Rico. They recorded the lizards' movements and behaviors over 15-minute intervals and measured the lizards' body temperatures.

"The findings suggest that scientists need to rethink how to model the activity of ectotherms and how temperature rise due to climate change may affect behavior," Leal said. "Instead of treating activity as an on- or off-switch, we need to start thinking about activity as more of a dimmer switch, where behaviors are being dialed up and dialed down."

The new modeling techniques presented in the study should provide scientists with the tools they need to create more targeted ways of determining the effects of climate variability on lizards' activities, such as eating and reproducing, Leal said.

###

The study, "Patterns of Thermal Constraint on Ectotherm Activity," appears in the March 11 online issue of the journal American Naturalist.

Editor's Note: For more on the story, please see: http://biology.missouri.edu/news/warming-temperatures-slow-but-dont-stop-lizards/

Media Contact

Jeff Sossamon
sossamonj@missouri.edu
573-882-3346

 @mizzounews

http://www.missouri.edu 

Jeff Sossamon | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>