Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living in the genetic comfort zone: how to avoid the influence of genetic variation

27.02.2015

The phenotype of organisms is shaped by the interaction between environmental factors and their genetic constitution. A recent study by a team of population geneticists at the Vetmeduni Vienna shows that fruit flies live in a sort of genetic comfort zone at a specific temperature. The scientists found that, despite their underlying genetic differences, two separate strains of flies had a very similar gene expression pattern at 18°C. This effect of ‘canalization’, which has also been described in humans, allows organisms to continue to grow and develop stable even in the face of genetic and environmental stress. The results were published in the journal PLOS Genetics.

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external modifications to the DNA that turn genes "on" or "off". These modifications do not change the DNA sequence, but instead, they affect how genes are expressed.


Laboratory fruit flies live in special glass containers.

Photo: Michael Bernkopf/Vetmeduni Vienna

Another, less known mechanism called canalization keeps organisms robust despite genetic mutations and environmental stressors. If an organism experiences environmental or genetic perturbations during its development, such as extreme living conditions or genetic mutations, canalization acts as a way of buffering these disturbances. The organism remains stable and can continue to develop without recognizable changes.

A comfort zone in the fly genome

Christian Schlötterer at the Institute of Population Genetics and his colleagues studied the mechanism of canalisation in fruit flies. The researchers subjected two genetically distinct strains of fruit flies, Oregon and Samarkand, to different temperatures (13°C, 18°C, 23°C and 29°C). Subsequently, they analysed the variation in gene expression in response to the different temperatures. The results revealed a homogenous pattern of gene expression among the two strains at 18°C. No matter whether the flies were from the Oregon or to the Samarkand strain, their gene expression was almost indistinguishable.

“The flies’ genetic comfort zone appears to be located at 18°C. “As soon as the flies leave the comfort zone, move to either higher or lower temperatures, the gene expression of the two strains varies dramatically” Schlötterer explains.

Buffering the genotype

The effect of canalization was first described in 1942, when researchers pointed out that organisms remain stable in their external appearance despite different environmental circumstances or genetic mutations. This sort of developmental buffering helps to stabilize organismal growth.

“If an organism develops along the canalization pathway, or along the comfort zone, mutations can accumulate without being expressed. Once an organisms leaves the canalized range, those hidden genetic variations can be expressed and become visible. The phenomenon is called decanalization”, Schlötterer explains.

Decanalization as the origin of complex genetic disease

A publication by U.S. researcher Greg Gibson in the journal Nature (Paper-Link) proposes that diseases such as diabetes, asthma, depression and cardiovascular disease are the consequence of genetic decanalization. He describes how migration, diet, smoking, air pollution and psychological stress can lead to stress-mediated decanalization and therefore cause certain complex genetic diseases in humans.
“Genetic information alone does not determine whether we stay healthy or not. It is the complex interaction of environmental conditions and genetic variation that needs to be considered,” says Schlötterer.

Service:
The article „Temperature stress mediates decanalization and dominance of gene expression in Drosophila melanogaster”, by Jun Chen, Viola Nolte and Christian Schlötterer will be published on the 26th of February 2015 at 8 pm (CET) in the journal PLOS Genetics.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Christian Schlötterer
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 676-3544155
christian.schloetterer@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>