Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017

Lipid, also known as fat, is an optimal energy source and an important cell component. Much is required for the rapid and uncontrolled growth of cancer cells. Researchers from the Biozentrum of the University of Basel and from the University of Geneva have now discovered that the protein mTOR stimulates the production of lipids in liver tumors to satisfy the increased nutrient turnover and energy needs of cancer cells among other functions. This process has also been observed in patients with liver cancer as the scientists report in “Cancer Cell”.

In Switzerland, about 650 new cases of liver cancer are diagnosed every year. The incidence of the malignant and aggressive liver cell carcinoma has doubled in the last 20 years, especially in developed countries. One possible reason for this is the increase in obesity and diabetes.


Lipid accumulation (red) in liver tissue promotes development of hepatocellular carcinoma.

Biozentrum, University of Basel

The scientists led by Prof. Michael N. Hall at the Biozentrum, University of Basel, and Prof. Howard Riezman, University of Geneva, have gained new insights into tumor development and disease progression.

In mouse models and patient samples, they have demonstrated that the growth regulator mTOR – mammalian target of rapamycin – promotes de novo lipid synthesis and thus tumorigenesis. The accumulation of fatty acids and lipids in the liver is one of the major causes of hepatocellular carcinoma.

The liver: Detoxifier and energy supplier

“The liver is in a way our body’s kitchen,” explains Yakir Guri, medical doctor and first author of the study. “It stores and recycles nutrients, produces hormone precursors and detoxifies the body by eliminating harmful substances, such as drugs and alcohol.” Not only excessive alcohol consumption, but also obesity and diabetes combined with lack of exercise can damage the liver.

A first asymptomatic syndrome is so-called “fatty liver”, which may cause inflammation that can progress to hepatocellular carcinoma (HCC). The aggressive and rapidly proliferating HCC cells ultimately destroy the surrounding healthy liver tissue, leading to liver failure.

Hepatocellular carcinoma: mTOR activation promotes tumorigenesis

The researchers initially investigated the progression of the disease in a mouse model. For this purpose, they constitutively activated mTOR specifically in liver cells. “We already knew that mTOR is involved in tumor development as it centrally controls cell growth. However, in the case of HCC we did not know which downstream metabolic and signaling pathways are affected,” says Guri.

The researchers have now discovered that mTORC2 – mTOR forms two protein complexes termed mTORC1 and mTORC2 – promotes the new synthesis of fatty acids and certain lipids. Most people do not realize that our body contains more lipid species than genes. It is assumed that there are thousands of different types,” says Guri. “Together with Howard Riezman’s team, we have been able to analyze a broad spectrum of such lipids.”

Lipids: Synthesis of lipids is required for tumor development

In hepatocytes, mTORC2 stimulates in particular the production of two lipid species important for cell growth: sphingolipids and cardiolipins. The first are structural components of cell membranes, which have to be continuously supplied in rapidly proliferating cells. Cardiolipins are located in the cellular powerhouse, the mitochondria, and are involved in energy production. By enhancing cardiolipin synthesis, the energy-hungry tumor cells ensure their energy supply. “Cancer cells depend on the new synthesis of fatty acids and lipids; if you turn off the tap, you stop the development of tumors.”

Patients: Analysis of liver biopsies confirms correlation

Analysis of tissue samples from patients with HCC confirmed the observations made in the mouse model. mTORC2 and its signaling pathways, which promote de novo synthesis of fatty acids and lipids, are also activated in tumor samples from patients.

Thus, the protein complex plays a critical role in the progression of benign “fatty liver” to aggressive HCC. The study provides important insights for the development of potential therapeutic interventions, as it shows that targeted lipogenesis inhibitors may have the potential to prevent tumor development.

The project has been funded by the European Research Council (ERC), the Swiss Cancer Research Foundation and the Swiss National Centre of Competence in Research (NCCR) Chemical Biology.

Original article

Yakir Guri, Marco Colombi, Eva Dazert, Sravanth K. Hindupur, Jason Roszik, Suzette Moes, Paul Jenoe, Markus H. Heim, Isabelle Riezman, Howard Riezman and Michael N. Hall
mTORC2 promotes tumorigenesis via lipid synthesis
Cancer Cell (2017), doi: 10.1016/j.ccell.2017.11.011

Further Information

• Prof. Michael Hall, University of Basel, Biozentrum, phone +41 61 207 21 50, email: m.hall@unibas.ch
• Dr. Katrin Bühler, University of Basel, Biozentrum, Communications, phone +41 61 207 09 74, email: katrin.buehler@unibas.ch

Dr. Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>