Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipid nanodiscs stabilize misfolding protein intermediates red-handed

18.12.2017

When proteins misfold, accumulate and clump in insulin-producing cells in the pancreas, they can kill these cells. Now, researchers at the Technical University of Munich (TUM), the University of Michigan and the Helmholtz-Zentrum Muenchen have obtained a structural snapshot of these proteins when they are most toxic, detailing them down to an atomic level. The researchers hope this kind of detail can help in the search for drugs to target the incorrectly folding proteins.

The clumps caused by misfolded proteins, called plaques, are implicated in many diseases: plaque interferes with neuron function in the brains of people with dementia and Alzheimer's. The process of the formation of plaques also kills islet cells, which produce insulin to metabolize sugar, in people with type 2 diabetes.


Superimposing the ten structures with the least energy shows nicely which structure the hIAPP molecule prefers in a membrane environment.

Image: Diana Rodriguez Camargo / TUM

“In general, toxicity to cells is extremely difficult to prove and characterize,” said Ayyalusamy Ramamoorthy, Professor at the University of Michigan and Hans Fischer Fellow of the Institute for Advanced Study at the Technical University of Munich. “On the other hand, we need to do this in order to develop drugs for potential treatment.”

Lipid nanodiscs stabilize aggregating proteins

To understand the critical protein structures, the researchers used “sushi-like” nanodics composed of layers of lipids surrounded by a belt to capture model proteins during the aggregation process.

The researchers allowed the proteins to fold to a certain point within the nanodisc – when they think the folding proteins are most toxic to islet cells – and then used nuclear magnetic resonance (NMR) spectroscopy to take atomic-level images of the proteins.

“The nanodiscs are like the difference between a swimming pool and the ocean. In the ocean, there are no boundaries; a swimming pool has boundaries,” Ramamoorthy said. “We're able to stop the aggregation of the protein in this restricted membrane environment so we can monitor what it looks like before it becomes a mass of fibers.”

A first step into development of drugs

The ability to pin down proteins while they’re in the process of amyloid aggregation in a stable manner allow their characterization using a variety of biophysical tools including fluorescence, mass-spectrometry, NMR, and cryo-electron-microscopy. Therewith the researchers hope to both develop and screen for drug compounds that can target the misfolding proteins that are implicated in these diseases.

“We are now screening interactions with small molecule compounds to see if we can inhibit the aggregation process that produces amyloids,” Ramamoorthy said. “This has been much wanted and much awaited information – for the scientific understanding of the pathology of amyloid diseases, and for the development of compounds to overcome these problems.”

The study was carried out by researchers at the Technical University of Munich, the University of Michigan, and the Helmholtz-Zentrum Muenchen in the framework of the TUM Institute of Advanced Study Focus Group “Protein Misfolding and Amyloid Diseases” where Prof. Ayyalusamy Ramamoorthy worked as TUM-IAS Hans Fischer Senior Fellow hosted by Bernd Reif, Professor for Solid State NMR-Spectroscopy at TUM.

This work was supported by funds from NIH, the Helmholtz-Gemeinschaft and the German Research Foundation, the Cluster of Excellence „Center for Integrated Protein Science Munich (CIPSM) and the Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Program under grant agreement no. 291763. The Gauss Center for Supercomputing provided computing time at the Leibniz Supercomputing Center in Garching.

Publication:

Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate
Diana C. Rodriguez Camargo, Kyle J. Korshavn, Alexander Jussupow, Kolio Raltchev, David Goricanec, Markus Fleisch, Riddhiman Sarkar, Kai Xue, Michaela Aichler, Gabriele Mettenleiter, Axel Karl Walch, Carlo Camilloni, Franz Hagn, Bernd Reif, Ayyalusamy Ramamoorthy
eLife, 2017; 6:e31226 – DOI: 10.7554/eLife.31226
Link: https://elifesciences.org/articles/31226

Contact:

Prof. Dr. Bernd Reif
Technical University of Munich
Solid State NMR-Spectroscopy
Lichtenbergstr 4, 85747 Garching, Germany
Tel.: +49 89 289 52615 – e-mail: reif@tum.de – web: http://www.ocb.ch.tum.de

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34381/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Lipid Lipid nanodiscs Protein Supercomputing TUM drugs islet cells proteins

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>