Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life on the edge prepares plants for climate change

18.12.2017

In the first study to predict whether different populations of the same plant species can adapt to climate change, scientists from the Max Planck Institute for Developmental Biology find that central European ones die first.

The researchers focused on mustard cress which grows across Europe, Asia and northwest Africa. Surprisingly, Scandinavian plants can cope with extreme drought as well as those from Mediterranean countries, according to research to be published in Nature Ecology and Evolution. This could be because water in the Scandinavian soil is frozen for many months, making it inaccessible to plants and effectively creating drought conditions.


Mustard cress, Arabidopsis thaliana, growing on a sandy beach at the Baltic Sea in southern Sweden.

Moises Exposito-Alonso, Max Planck Institute for Developmental Biology

The researchers planted mustard cress seeds collected from over two hundred locations as diverse as North Africa, Spain, central Europe and northern Sweden. After they had germinated under optimal conditions, the plants were challenged with severe drought, and their ability to survive this stress was recorded.

Using large-scale genome sequencing information, specific genetic variants could be linked to the plants’ ability to survive longer. Combined with climate predictions from the Intergovernmental Panel on Climate Change, the team were then able to generate maps showing the location of genetic variants key to the species’ future survival.

“I was shocked to touch the soil in the pots of plants from northern Sweden and Spain, finding it completely dry and brittle, while the plants survived with rich, green leaves,” says lead author Moises Exposito-Alonso from the Max Planck Institute for Developmental Biology.

“I travelled to Sweden, where I observed plants surviving in the same way in their natural environment. It reminded me of seeing mustard cress thrive in the broken clay of dried-out river beds where I grew up in Spain. Many botanists and also others think of mustard cress as being the lab rat of plant biologists, but what few realize is that it lives in extreme environments, making it ideal for studying adaptation to climate change,” he says.

Over the next 50 to 100 years, extreme drought events are predicted to become more and more widespread. This is one of the most challenging consequences of global warming for plants and animals.

A steady increase in temperatures is already underway, but this and other studies show that reduced rainfall, which will affect plants and humans alike in a less linear way, is likely to have an even greater effect on survival. By 2070, Central Europe is likely to have much less rainfall than today. The new research shows that plants in this region do not have the gene variants needed to adapt.

Previous predictions for the distribution of plants or animals in response to climate change have largely ignored the fact that there is often a tremendous amount of genetic variation in a species. For the first time, scientists have used knowledge about the geographic distribution of genetic variation to map a species’ ability to adapt by natural selection.

“Because earth is currently experiencing dramatic climate change, it is of critical interest to understand how species will respond to it,” says Detlef Weigel, who supervised the study with Hernán Burbano.

“The chance of a species to withstand global warming will likely to depend on its diversity, especially whether it has already today individuals adapted to extreme conditions,” added Burbano.

The findings reported by the Max Planck Institute can help to rescue plant and animal species with pressing conservation needs. If populations with genetic variants that support drought adaptation can be found, they could be relocated to areas where such adaptations are most needed.

Such introduced individuals would then greatly improve the local gene pool. The same approach could be used to reduce a mismatch between crop varieties and their environment, helping to improve the performance of crops.

The work was funded by the European Research Council and the Max Planck Society.

Link to the paper: Moises Exposito-Alonso et al. “Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana” will be published in the journal Nature Ecology and Evolution.
https://10.1038/s41559-017-0423-0
DOI:10.1038/s41559-017-0423-0

Sarah Hailer | Max-Planck-Institut für Entwicklungsbiologie
Further information:
http://www.fml.mpg.de

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>