Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

License For Cutting: How Intracellular Signaling Regulates Growth Factor Production

10.07.2015

Cancer cells need life-essential molecules to proliferate. These growth factors are activated by ectodomain shedding of precursor proteins on the outside of plasma membrane, mainly carried out by three human cleavage enzymes. A pharmaceutical blocking of these enzymes could hinder cancer from growing but would also inhibit other life-essential processes.

Researchers from German Leibniz Institute for Age Research and Harvard University, US, showed that the factor-precursor-producing cells themselves define if cleavage may occur. This is decided by intracellular signaling. Interfering with defined signaling in cells producing cancer growth factors could lead to a new way of cancer treatment.


License for cutting: Factor-precursor-producing cells determine if and when ectodomain cleavage may occur to activate growth factors.

[Graphic: Liseth M Parra / FLI]


License for cutting: Factor-precursor-producing cells determine if and when ectodomain cleavage may occur to activate growth factors

[Graphic: K. Wagner / FLI]

As cancer cells proliferate in an unlimited way, they need to be supplied with oxygen and nutrients. For their growth and the formation of blood vessels, so-called growth factors are required. These hormone-like proteins are activated by the shedding of transmembrane precursor proteins that have to be cleaved on the outside of the plasma membrane by specialized enzymes.

In the human body, mainly three “cleavage enzymes” are responsible for ectodomain shedding of hundreds of growth factors. Hindering one of these enzymes from cleaving would certainly suppress the production of growth factors related to tumorigenesis, but would have severe side-effects: a lot of life-essential molecules would also be inhibited. Since ectodomain cleavage is highly important for homeostasis of the organism, it needs to be tightly regulated with respect to both its overall abundance and time course.

Now, in a collaborative project, researchers from German Leibniz Institute for Age Research (FLI) in Jena and renowned Harvard University in Cambridge, US, showed that obviously the precursor proteins themselves dictate if and when the “scissor”-enzymes may cut. Signal processing in the intracellular domain of the precursor-protein-producing cells is responsible for modifications that likely induce a relative positional change of the dimerization partners and, in the end, allow cleavage.

This is individually different for each precursor protein. The collaborators from Jena and Cambridge already found many details of the mechanism to explain how the intracellular domain modification communicates with the ectodomain of the substrate to allow for cleavage to occur, e.g. releasing growth factors linked to breast cancer (Epidermal Growth Factor family) and Neuregulin which is important for neuro-regeneration, as well as cleavage of a protein relevant for metastasizing of cancer cells. The latest publication in the "Journal of Biological Chemistry" now was nominated as one of the best 50 out of this year’s 6.000 publications.

“Our research results offer a new way of suppressing growth factors related to cancer cell proliferation”, Prof. Dr. Peter Herrlich, former scientific director and now associated researcher at FLI, explains. Instead of blocking the cleavage enzymes and condoning side-effects, the intracellular signal processing for single precursor proteins may be inhibited in order to specifically knock out the growth factors required by individual cancer types.

Publication.
Hartmann M, Parra LM, Ruschel A, Lindner C, Morrison H, Herrlich A, Herrlich P. Inside-out Regulation of Ectodomain Cleavage of Cluster-of-Differentiation-44 (CD44) and of Neuregulin-1 Requires Substrate Dimerization. Journal of Biological Chemistry (2015), DOI 10.1074/jbc.M114.610204.

Contact.
Dr. Evelyn Kästner
Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel.: +49 3641-656373, Fax: +49 3641-656351, E-Mail: presse@fli-leibniz.de

Background Information

The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.fli-leibniz.de.

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.fli-leibniz.de - Website Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>