Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Let it snow


Uta Passow studies the intricacies of marine snow formation in the Gulf of Mexico following the Deepwater Horizon oil spill

Five years ago, the Deepwater Horizon (DWH) oil rig exploded in the Gulf of Mexico. Since then, scientists have continued to study the effects of the largest environmental disaster in the history of the petroleum industry.

This is an example of marine snow formed in roller table experiments designed to investigate conditions that induce its formation.

Credit: UCSB

UC Santa Barbara research oceanographer Uta Passow has been investigating the formation of aggregated oil and organic matter, commonly called marine snow. "Marine snow is like dust bunnies in the house," explained Passow, a research scientist at UCSB's Marine Science Institute who has studied the phenomenon for a long time.

"All the gunk and little pieces in the ocean stick together, and underwater it looks like a snow-storm. The little particles aren't heavy enough to sink, but marine snow is big enough to sink very fast, 100 meters or more per day. It's the only way in which material that grows on the surface, where there is light, goes to depth.

"Before Deepwater Horizon, we didn't even know that oil and marine snow had anything to do with each other," she added.

Passow's latest research demonstrates that microbes and plankton have distinct interactions with oil, which subsequently provide alternate ways for marine snow to develop. She also found that the presence of the dispersant Corexit used after the explosion likely inhibited the formation of microbial-generated marine snow. Her findings appear online through ScienceDirect and will be published in Deep Sea Research II - Topical Studies in Oceanography in June.

The formation of marine snow, which consists of sinking composite particles greater than 0.5 millimeters, is a common ocean process. In fact, the topography of the northern Gulf of Mexico's continental shelf facilitates a suspended sediment zone. The area is also home to particle inputs from rivers, runoff and coastal erosion. These conditions along with natural hydrocarbon seafloor seeps provide an environment favorable to the formation and sinking of the oiled mineral aggregates that constitute marine snow.

Thanks to the gulf's natural oil seeps, the flora and fauna of the area's marine ecosystem have adapted to small amounts of oil in the water column. However, scientists did not know how they would react to a prolonged release of oil.

After the DWH explosion, oil accumulated at the sea surface and in subsurface plumes. Prior research has documented observations of large marine snow near surface slicks from the spill as well as flaky, oily material coating coral reefs near the spill site.

"The impact of the oil on the open ocean ecosystem when it's disbursed and diluted at the top of the water column is very different from the impacts it has when it sinks and accumulates on the seafloor," Passow said. "We need to know where the oil is to learn how to keep the damage to a minimum for the whole ecosystem, and for that we need to understand all of the pathways involved."

To learn more, Passow used roller table experiments to investigate conditions that induce marine snow formation. She also examined the effects of different types of oil (Louisiana light crude, Macondo oil and bucket-collected spill oil), photochemical weathering and the presence of phytoplankton and dispersant on marine snow formation.

She used seawater treatments containing no particles greater than a millimeter. When incubated with collected DWH spill oil, large centimeter-sized marine snow formed. When the seawater was incubated with weathered crude oil, smaller yet similar marine snow formed. "Even when spill oil was added to artificial seawater, marine snow formed," Passow said. "This suggests that the oil included microbes capable of creating marine snow."

Passow's research demonstrates the potential of microbial-mediated or plankton-aggregate snow to transport oil carbon to the seafloor. "It is widely believed among scientists that anywhere from 3 to 25 percent of the oil released during the spill was deposited on the seafloor as a result of marine snow sedimentation," she explained. "However, this pathway was not considered in response strategies, nor was it included in the calculations for the DWH spill."

She recommended that future modeling efforts and oil spill calculations include marine snow as an oil distribution mechanism and that scientists re-evaluate dispersants as a mediating measure. "This study contributed a central piece toward the understanding of the mechanisms that lead to oil-sinking products," Passow said.


This research was made possible in part by a grant from the Gulf of Mexico Research Initiative to the Ecosystems Impacts of Oil and Gas Inputs to the Gulf consortium. Other funding sources included a Rapid Response Research grant from the National Science Foundation.

Media Contact

Julie Cohen


Julie Cohen | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>