Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let it snow

21.04.2015

Uta Passow studies the intricacies of marine snow formation in the Gulf of Mexico following the Deepwater Horizon oil spill

Five years ago, the Deepwater Horizon (DWH) oil rig exploded in the Gulf of Mexico. Since then, scientists have continued to study the effects of the largest environmental disaster in the history of the petroleum industry.


This is an example of marine snow formed in roller table experiments designed to investigate conditions that induce its formation.

Credit: UCSB

UC Santa Barbara research oceanographer Uta Passow has been investigating the formation of aggregated oil and organic matter, commonly called marine snow. "Marine snow is like dust bunnies in the house," explained Passow, a research scientist at UCSB's Marine Science Institute who has studied the phenomenon for a long time.

"All the gunk and little pieces in the ocean stick together, and underwater it looks like a snow-storm. The little particles aren't heavy enough to sink, but marine snow is big enough to sink very fast, 100 meters or more per day. It's the only way in which material that grows on the surface, where there is light, goes to depth.

"Before Deepwater Horizon, we didn't even know that oil and marine snow had anything to do with each other," she added.

Passow's latest research demonstrates that microbes and plankton have distinct interactions with oil, which subsequently provide alternate ways for marine snow to develop. She also found that the presence of the dispersant Corexit used after the explosion likely inhibited the formation of microbial-generated marine snow. Her findings appear online through ScienceDirect and will be published in Deep Sea Research II - Topical Studies in Oceanography in June.

The formation of marine snow, which consists of sinking composite particles greater than 0.5 millimeters, is a common ocean process. In fact, the topography of the northern Gulf of Mexico's continental shelf facilitates a suspended sediment zone. The area is also home to particle inputs from rivers, runoff and coastal erosion. These conditions along with natural hydrocarbon seafloor seeps provide an environment favorable to the formation and sinking of the oiled mineral aggregates that constitute marine snow.

Thanks to the gulf's natural oil seeps, the flora and fauna of the area's marine ecosystem have adapted to small amounts of oil in the water column. However, scientists did not know how they would react to a prolonged release of oil.

After the DWH explosion, oil accumulated at the sea surface and in subsurface plumes. Prior research has documented observations of large marine snow near surface slicks from the spill as well as flaky, oily material coating coral reefs near the spill site.

"The impact of the oil on the open ocean ecosystem when it's disbursed and diluted at the top of the water column is very different from the impacts it has when it sinks and accumulates on the seafloor," Passow said. "We need to know where the oil is to learn how to keep the damage to a minimum for the whole ecosystem, and for that we need to understand all of the pathways involved."

To learn more, Passow used roller table experiments to investigate conditions that induce marine snow formation. She also examined the effects of different types of oil (Louisiana light crude, Macondo oil and bucket-collected spill oil), photochemical weathering and the presence of phytoplankton and dispersant on marine snow formation.

She used seawater treatments containing no particles greater than a millimeter. When incubated with collected DWH spill oil, large centimeter-sized marine snow formed. When the seawater was incubated with weathered crude oil, smaller yet similar marine snow formed. "Even when spill oil was added to artificial seawater, marine snow formed," Passow said. "This suggests that the oil included microbes capable of creating marine snow."

Passow's research demonstrates the potential of microbial-mediated or plankton-aggregate snow to transport oil carbon to the seafloor. "It is widely believed among scientists that anywhere from 3 to 25 percent of the oil released during the spill was deposited on the seafloor as a result of marine snow sedimentation," she explained. "However, this pathway was not considered in response strategies, nor was it included in the calculations for the DWH spill."

She recommended that future modeling efforts and oil spill calculations include marine snow as an oil distribution mechanism and that scientists re-evaluate dispersants as a mediating measure. "This study contributed a central piece toward the understanding of the mechanisms that lead to oil-sinking products," Passow said.

###

This research was made possible in part by a grant from the Gulf of Mexico Research Initiative to the Ecosystems Impacts of Oil and Gas Inputs to the Gulf consortium. Other funding sources included a Rapid Response Research grant from the National Science Foundation.

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>