Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Let it snow


Uta Passow studies the intricacies of marine snow formation in the Gulf of Mexico following the Deepwater Horizon oil spill

Five years ago, the Deepwater Horizon (DWH) oil rig exploded in the Gulf of Mexico. Since then, scientists have continued to study the effects of the largest environmental disaster in the history of the petroleum industry.

This is an example of marine snow formed in roller table experiments designed to investigate conditions that induce its formation.

Credit: UCSB

UC Santa Barbara research oceanographer Uta Passow has been investigating the formation of aggregated oil and organic matter, commonly called marine snow. "Marine snow is like dust bunnies in the house," explained Passow, a research scientist at UCSB's Marine Science Institute who has studied the phenomenon for a long time.

"All the gunk and little pieces in the ocean stick together, and underwater it looks like a snow-storm. The little particles aren't heavy enough to sink, but marine snow is big enough to sink very fast, 100 meters or more per day. It's the only way in which material that grows on the surface, where there is light, goes to depth.

"Before Deepwater Horizon, we didn't even know that oil and marine snow had anything to do with each other," she added.

Passow's latest research demonstrates that microbes and plankton have distinct interactions with oil, which subsequently provide alternate ways for marine snow to develop. She also found that the presence of the dispersant Corexit used after the explosion likely inhibited the formation of microbial-generated marine snow. Her findings appear online through ScienceDirect and will be published in Deep Sea Research II - Topical Studies in Oceanography in June.

The formation of marine snow, which consists of sinking composite particles greater than 0.5 millimeters, is a common ocean process. In fact, the topography of the northern Gulf of Mexico's continental shelf facilitates a suspended sediment zone. The area is also home to particle inputs from rivers, runoff and coastal erosion. These conditions along with natural hydrocarbon seafloor seeps provide an environment favorable to the formation and sinking of the oiled mineral aggregates that constitute marine snow.

Thanks to the gulf's natural oil seeps, the flora and fauna of the area's marine ecosystem have adapted to small amounts of oil in the water column. However, scientists did not know how they would react to a prolonged release of oil.

After the DWH explosion, oil accumulated at the sea surface and in subsurface plumes. Prior research has documented observations of large marine snow near surface slicks from the spill as well as flaky, oily material coating coral reefs near the spill site.

"The impact of the oil on the open ocean ecosystem when it's disbursed and diluted at the top of the water column is very different from the impacts it has when it sinks and accumulates on the seafloor," Passow said. "We need to know where the oil is to learn how to keep the damage to a minimum for the whole ecosystem, and for that we need to understand all of the pathways involved."

To learn more, Passow used roller table experiments to investigate conditions that induce marine snow formation. She also examined the effects of different types of oil (Louisiana light crude, Macondo oil and bucket-collected spill oil), photochemical weathering and the presence of phytoplankton and dispersant on marine snow formation.

She used seawater treatments containing no particles greater than a millimeter. When incubated with collected DWH spill oil, large centimeter-sized marine snow formed. When the seawater was incubated with weathered crude oil, smaller yet similar marine snow formed. "Even when spill oil was added to artificial seawater, marine snow formed," Passow said. "This suggests that the oil included microbes capable of creating marine snow."

Passow's research demonstrates the potential of microbial-mediated or plankton-aggregate snow to transport oil carbon to the seafloor. "It is widely believed among scientists that anywhere from 3 to 25 percent of the oil released during the spill was deposited on the seafloor as a result of marine snow sedimentation," she explained. "However, this pathway was not considered in response strategies, nor was it included in the calculations for the DWH spill."

She recommended that future modeling efforts and oil spill calculations include marine snow as an oil distribution mechanism and that scientists re-evaluate dispersants as a mediating measure. "This study contributed a central piece toward the understanding of the mechanisms that lead to oil-sinking products," Passow said.


This research was made possible in part by a grant from the Gulf of Mexico Research Initiative to the Ecosystems Impacts of Oil and Gas Inputs to the Gulf consortium. Other funding sources included a Rapid Response Research grant from the National Science Foundation.

Media Contact

Julie Cohen


Julie Cohen | EurekAlert!

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>