Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less is more: Researchers develop a ‘molecular needle’ using a simplified biological system

15.05.2017

Minimalism is an increasingly popular lifestyle choice that encourages individuals to decrease the overall number of possessions owned and live more simply. According to minimalist philosophy, the reduction of unnecessary clutter enables one to live a more functional and purposeful existence. IMP-IMBA Group Leader and CSSB scientist Thomas Marlovits*, in collaboration with colleagues from Massachusetts Institute of Technology (MIT), discovered that a minimalist approach can also be applied to complex biological systems, such as the type III secretion system. The findings of this collaborative study have been published in the scientific journal, Nature Communications.

The type III secretion system (T3SS) is a needle-like molecular machine found in gram negative bacteria that transports pathogenic proteins from the bacteria to the human host cell thus initiating infection. The proteins in this system are tightly regulated and the regulatory elements of TSS3 vary greatly depending on the surrounding environment of the bacteria.


The type III secretion system (T3SS) is a needle-like molecular machine that gram negative bacteria use to infect cells

IMP-IMBA

For example, Salmonella, bacteria which cause food poisoning, secretes its pathogenic proteins into human gut cells. “The question we asked ourselves is: Can we remove all of the regulatory elements from this complex biological system and re-build (refactor) the needle complex using basic genetic principles?” explains Marlovits.

To accomplish this, scientists from MIT used synthetic biology to recreate the Salmonella needle complex. Using a bottom up approach, coding and non-coding DNA was replaced or altered with synthetic parts and the scientists were able to create an ultra-simplified ‘genetic island.’ The functionality of this island was then tested in laboratories in both Boston and Vienna using conventional bio-chemistry methods. The Marlovits lab then used electron microscopy to visualize the integrity of the entire system.

“Over the course of this three year study, many rounds of debugging were needed to generate a fully functional system,” explains Marlovits “this is the first time that synthetic biology has been used successfully on such a complex system. Previous systems that have been refactored contained just three or four proteins; TSS3 is comprised of over 20 proteins.”

The development of this simplified TSS3 reveals that none of the intrinsic regulatory features of the system are required to generate a functional needle complex and can be exchanged for others. Removing this regulatory “clutter” has not only resulted in the discovery of essential functional roles played by internal start site and small RNA in but has also unveiled key insights regarding the regulatory elements themselves. Regulation, while not directly involved in function, may exist to ensure the efficient utilization of cellular resources and could also increase the number of environmental conditions under which TSS3 can function.

The refactored TSS3 could serve as new tool in biotechnology. This simplified needle complex could be inserted into other bacteria and then turned-on via a built in regulatory element that acts as a molecular switch. “TSS3 could be used as a delivery device for novel agents or vaccines,” explains Marlovits “future studies will explore the possibility of placing this refactored TSS3 into new environments.”

This minimalistic approach to understanding complex biological systems could become an essential new tool for scientists at CSSB. “Understanding how the mechanisms of host pathogen interaction impact biological systems is one of the main goals at CSSB. This new approach provides us with a unique way of looking at systems that will help us discover novel elements,” stated Marlovits.

*Thomas Marlovits is a joint group leader at the the Research Institute of Molecular Pathology (IMP) and the Institute of Molecular Biotechnology (IMBA) in Vienna. He is also affiliated with the Centre for Structural Systems Biology (CSSB), the University Medical Center Hamburg-Eppendorf (UKE), and the ‘Deutsches Elektronen-Synchrotron’ DESY in Hamburg.

Original Publication:
Control of type III protein secretion using a minimal genetic system. Song M, Sukovich DJ, Ciccarelli L, Mayr J, Fernandez-Rodriguez J, Mirsky EA, Tucker AC, Gordon DB, Marlovits TC, Voigt CA.
Nature Communications; 2017 May 9;8:14737. doi: 10.1038/ncomms14737.

About the IMP:
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

About IMBA:
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.

About the Vienna BioCenter:
The Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, education and business on a single campus. About 1,600 employees, more than 1,000 students, 93 research groups, 16 biotech companies, and scientists from more than 40 nations create a highly dynamic environment. See: http://www.viennabiocenter.org/

Media Contact at IMP:
Dr. Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Media Contact at IMBA:
Ines Méhu-Blantar
IMBA Communications
IMBA - Institute of Molecular Biotechnology
+43 (1) 790 44-3628
ines.mehu-blantar@imba.oeaw.ac.at

Weitere Informationen:

https://www.nature.com/articles/ncomms14737
https://www.imp.ac.at/research/research-groups/thomas-marlovits/research/
http://imba.oeaw.ac.at/research/thomas-marlovits/

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>