Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015

Penicillin, an antibiotic discovered by Alexander Fleming in 1928, is well known. While Fleming noticed the effect of this compound by pure chance, nowadays the quest for novel agents relies on systematic research.

Meanwhile scientists identified many more secondary metabolites like Erythromycin, an antibacterial drug. The enormous relevance of these natural products in medicine, agriculture and biotechnology is without any doubt.

Many living organisms like plants, fungi and bacteria produce these small exotic molecules in several steps of synthesis, and researchers use computer-based methods for novel compounds and consider their potential use.

Now an international consortium of scientists published the minimal standards to organize the data in the scientific journal Nature Chemical Biology in order to optimize the quest for novel natural products.

The approach via genome analysis is straightforward and is economical in time and costs as the Biosynthetic Gene Clusters (BGC) can be identified by computer analysis. Only then comes the expensive and time-consuming experimental proof of potential candidate gene clusters in the laboratory. Over ten years ago the Genomic Standard Consortium (GSC) published the first standards for genomic databases.

Prof. Frank Oliver Glöckner – head of the research group Microbial Genomics and Bioinformatics at the Max Planck Institute for Marine Microbiology in Bremen – and his coworker Prof. Marnix Medema have founded this consortium.

Glöckner says: “At present the information about these gene clusters is scattered across hundreds of articles in different journals. Without a common standard it is cumbersome to extract, combine and evaluate these data. Our consortium consists of hundreds of scientists, who agreed upon four parameters for each BGC in the database. The main points are who has published what kind of gene cluster in which journal, where is the gene cluster located, what does it produce, and what kind of experimental proof was published. This “Minimal Information about a Biosynthetic Gene Cluster” (MIBiG) links the existing databases and will alleviate the quest for novel substances.”

The scientists are sure that with their work it will be much easier to reconstruct the relationships between gene clusters, their chemical potential and their biological diversity.

For more information please contact

Prof. Dr. Frank Oliver Glöckner
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen,
Phone: +49 (0)421 2028 – 970, fgloecknmpi-bremen.de

or the Press officer
Dr. Manfred Schlösser
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen,
Phone:+49 (0)421 2028 – 704, mschloesmpi-bremen.de

Original Publication
Minimum Information about a Biosynthetic Gene cluster. Marnix H Medema, Renzo Kottmann, Pelin Yilmaz et al. Nature Chemical Biology 11, 625–631 (2015) doi:10.1038/nchembio.1890
The complete article is here http://www.nature.com/nchembio/journal/v11/n9/full/nchembio.1890.html

The article cited above is licensed under a Creative Commons Attribution- Non Commercial-ShareAlike 3.0 Unported License. http://creativecommons.org/licenses/by-nc-sa/3.0/.

Weitere Informationen:

http://www.mpi-bremen.de website of the Max Planck Institute for Marine Microbiology

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>