Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015

Penicillin, an antibiotic discovered by Alexander Fleming in 1928, is well known. While Fleming noticed the effect of this compound by pure chance, nowadays the quest for novel agents relies on systematic research.

Meanwhile scientists identified many more secondary metabolites like Erythromycin, an antibacterial drug. The enormous relevance of these natural products in medicine, agriculture and biotechnology is without any doubt.

Many living organisms like plants, fungi and bacteria produce these small exotic molecules in several steps of synthesis, and researchers use computer-based methods for novel compounds and consider their potential use.

Now an international consortium of scientists published the minimal standards to organize the data in the scientific journal Nature Chemical Biology in order to optimize the quest for novel natural products.

The approach via genome analysis is straightforward and is economical in time and costs as the Biosynthetic Gene Clusters (BGC) can be identified by computer analysis. Only then comes the expensive and time-consuming experimental proof of potential candidate gene clusters in the laboratory. Over ten years ago the Genomic Standard Consortium (GSC) published the first standards for genomic databases.

Prof. Frank Oliver Glöckner – head of the research group Microbial Genomics and Bioinformatics at the Max Planck Institute for Marine Microbiology in Bremen – and his coworker Prof. Marnix Medema have founded this consortium.

Glöckner says: “At present the information about these gene clusters is scattered across hundreds of articles in different journals. Without a common standard it is cumbersome to extract, combine and evaluate these data. Our consortium consists of hundreds of scientists, who agreed upon four parameters for each BGC in the database. The main points are who has published what kind of gene cluster in which journal, where is the gene cluster located, what does it produce, and what kind of experimental proof was published. This “Minimal Information about a Biosynthetic Gene Cluster” (MIBiG) links the existing databases and will alleviate the quest for novel substances.”

The scientists are sure that with their work it will be much easier to reconstruct the relationships between gene clusters, their chemical potential and their biological diversity.

For more information please contact

Prof. Dr. Frank Oliver Glöckner
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen,
Phone: +49 (0)421 2028 – 970, fgloecknmpi-bremen.de

or the Press officer
Dr. Manfred Schlösser
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen,
Phone:+49 (0)421 2028 – 704, mschloesmpi-bremen.de

Original Publication
Minimum Information about a Biosynthetic Gene cluster. Marnix H Medema, Renzo Kottmann, Pelin Yilmaz et al. Nature Chemical Biology 11, 625–631 (2015) doi:10.1038/nchembio.1890
The complete article is here http://www.nature.com/nchembio/journal/v11/n9/full/nchembio.1890.html

The article cited above is licensed under a Creative Commons Attribution- Non Commercial-ShareAlike 3.0 Unported License. http://creativecommons.org/licenses/by-nc-sa/3.0/.

Weitere Informationen:

http://www.mpi-bremen.de website of the Max Planck Institute for Marine Microbiology

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>