Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from medicine – new tools for plant research

18.08.2014

A new chemical tool to analyze plant hormone pathways is established by Prof. Dr. Markus Kaiser, Centre for Medical Biotechnology, University of Duisburg-Essen (UDE), and Dr. Erich Kombrink, Max Planck Institute for Plant Breeding Research, Cologne. In the latest issue of „Nature Chemical Biology“, the researchers disclose a small molecule inhibitor, which interferes with the activity of the plant hormone jasmonic acid. The approach resembles concepts, which are well established in medical therapy and opens new opportunities for plant research. (Doi:10.1038/nchembio.1591).

Currently, research into plant hormone signalling relies primarily on molecular genetics. Genes of interest are modified or extinguished to then study resultant changes in the plant’s phenotype. This strategy is powerful but has its limitations, as is highlighted by the plant hormone jasmonic acid.

Although jasmonic acid controls a diversity of biological functions, as flower formation, root growth, protection against insect attack and infections, wound healing, plant aging and others, only one signal transduction pathway has been elucidated so far.

This single pathway however is not sufficient to explain the broad spectrum of hormone actions. Other, so far unknown, signaling pathways and mechanisms must exist. To get a better understanding of jasmonic acid’s signaling mechanisms, alternative experimental approaches are therefore required. The teams from Essen and Cologne took up this challenge and used a procedure, which is well established in medical research but still rarely used in plant science:

They searched for a chemical drug that can be used to block a specific signalling pathway. In medicine, such compounds find applications as drugs to treat diseases. In plant science, however, such inhibitors may represent important chemical tools to advance the study of plant signalling pathways.

In the search of candidate inhibitors of jasmonic acid signalling, the scientists performed studies in intact plants. They started with a screening in the ‘model plant’ Arabidopsis thaliana. From 1.728 tested compounds, 16 molecules were identified that impaired jasmonic acid signalling. These were then studied in more detail and finally, only one compound was confirmed as a suitable specific inhibitor.

The compound was called Jarin-1. “Structurally, the compound is a plant alkaloid whose amino groups may carry different side chains” the researchers comment. “The activity of the compound depends on a specific side chain. Modifications deactivate the inhibitor. As a final proof of the active chemical structure, we synthesized it from scratch.’

As a next step the scientists looked for the molecular target of the new inhibitor. The already known signal transduction pathway of jasmonic acid starts with an enzyme called JAR1 that links the plant hormone jasmonic acid to the amino acid isoleucine. The resulting chemical product then modulates the transcription of various genes that together form the particular biological activity of jasmonic acid.

Kombrink and Kaiser were able to show that this enzyme JAR1 is the target of the inhibitor Jarin-1. Inhibition of JAR1 causes depletion of the required jasmonic acid-isoleucine conjugate, thus impairing gene transcription. They furthermore found that the molecule Jarin-1 is not only active in Arabidopsis but also in Candamine hirsuta, lamb’s cress. Therefore, the inhibitor seems to be broadly applicable and thus may be used in future applications to advance the understanding of jasmonic acid signalling.

What is particular about this new approach and caused the renowned journal “Nature Chemical Biology” to publish the work? Small molecules are promising new tools for plant research. The scientists demonstrate exemplarily how to screen for a specific small molecule inhibitor, how to characterize it and how to identify its target protein and they point out possible applications. The scope of the study turns the publication into something highly special.

Contact:

Dr. Erich Kombrink
Max-Planck-Institut for Plant Breeding Research
Carl-von-Linné-Weg 10
50829 Köln
Telefon: +49 221 5062 320
kombrink@mpipz.mpg.de

Prof. Dr. Markus Kaiser
University Duisburg-Essen
Center for Medical Biotechnology
Universitätsstr. 2
45117 Essen

Weitere Informationen:

http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.1591.html
http://dx.doi.org/10.1038/nchembio.1591

Beate Kostka | idw - Informationsdienst Wissenschaft

Further reports about: Arabidopsis Learning acid amino enzyme hormone jasmonic mechanisms pathway signalling transcription

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>