Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from medicine – new tools for plant research

18.08.2014

A new chemical tool to analyze plant hormone pathways is established by Prof. Dr. Markus Kaiser, Centre for Medical Biotechnology, University of Duisburg-Essen (UDE), and Dr. Erich Kombrink, Max Planck Institute for Plant Breeding Research, Cologne. In the latest issue of „Nature Chemical Biology“, the researchers disclose a small molecule inhibitor, which interferes with the activity of the plant hormone jasmonic acid. The approach resembles concepts, which are well established in medical therapy and opens new opportunities for plant research. (Doi:10.1038/nchembio.1591).

Currently, research into plant hormone signalling relies primarily on molecular genetics. Genes of interest are modified or extinguished to then study resultant changes in the plant’s phenotype. This strategy is powerful but has its limitations, as is highlighted by the plant hormone jasmonic acid.

Although jasmonic acid controls a diversity of biological functions, as flower formation, root growth, protection against insect attack and infections, wound healing, plant aging and others, only one signal transduction pathway has been elucidated so far.

This single pathway however is not sufficient to explain the broad spectrum of hormone actions. Other, so far unknown, signaling pathways and mechanisms must exist. To get a better understanding of jasmonic acid’s signaling mechanisms, alternative experimental approaches are therefore required. The teams from Essen and Cologne took up this challenge and used a procedure, which is well established in medical research but still rarely used in plant science:

They searched for a chemical drug that can be used to block a specific signalling pathway. In medicine, such compounds find applications as drugs to treat diseases. In plant science, however, such inhibitors may represent important chemical tools to advance the study of plant signalling pathways.

In the search of candidate inhibitors of jasmonic acid signalling, the scientists performed studies in intact plants. They started with a screening in the ‘model plant’ Arabidopsis thaliana. From 1.728 tested compounds, 16 molecules were identified that impaired jasmonic acid signalling. These were then studied in more detail and finally, only one compound was confirmed as a suitable specific inhibitor.

The compound was called Jarin-1. “Structurally, the compound is a plant alkaloid whose amino groups may carry different side chains” the researchers comment. “The activity of the compound depends on a specific side chain. Modifications deactivate the inhibitor. As a final proof of the active chemical structure, we synthesized it from scratch.’

As a next step the scientists looked for the molecular target of the new inhibitor. The already known signal transduction pathway of jasmonic acid starts with an enzyme called JAR1 that links the plant hormone jasmonic acid to the amino acid isoleucine. The resulting chemical product then modulates the transcription of various genes that together form the particular biological activity of jasmonic acid.

Kombrink and Kaiser were able to show that this enzyme JAR1 is the target of the inhibitor Jarin-1. Inhibition of JAR1 causes depletion of the required jasmonic acid-isoleucine conjugate, thus impairing gene transcription. They furthermore found that the molecule Jarin-1 is not only active in Arabidopsis but also in Candamine hirsuta, lamb’s cress. Therefore, the inhibitor seems to be broadly applicable and thus may be used in future applications to advance the understanding of jasmonic acid signalling.

What is particular about this new approach and caused the renowned journal “Nature Chemical Biology” to publish the work? Small molecules are promising new tools for plant research. The scientists demonstrate exemplarily how to screen for a specific small molecule inhibitor, how to characterize it and how to identify its target protein and they point out possible applications. The scope of the study turns the publication into something highly special.

Contact:

Dr. Erich Kombrink
Max-Planck-Institut for Plant Breeding Research
Carl-von-Linné-Weg 10
50829 Köln
Telefon: +49 221 5062 320
kombrink@mpipz.mpg.de

Prof. Dr. Markus Kaiser
University Duisburg-Essen
Center for Medical Biotechnology
Universitätsstr. 2
45117 Essen

Weitere Informationen:

http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.1591.html
http://dx.doi.org/10.1038/nchembio.1591

Beate Kostka | idw - Informationsdienst Wissenschaft

Further reports about: Arabidopsis Learning acid amino enzyme hormone jasmonic mechanisms pathway signalling transcription

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>